Изохорический процесс как найти v

Какой процесс называется изохорным, условия протекания

Определение

Изохорным процессом называют термодинамический процесс, протекающий при условии постоянного объема.

Изохорный процесс можно наблюдать опытным путем. Для этого необходимо повышать или понижать температуру вещества в газообразном или жидком состоянии, находящегося в сосуде и сохраняющего стабильность объема. В случае, когда манипуляции производят с идеальным газом, его давление и температура будут изменяться прямо пропорционально, согласно закону Шарля. Для реальных газов данная закономерность не применима.

История возникновения теории, кто открыл, формула

Изучение изохорного процесса связывают с Гийомом Амонтоном. Работа ученого под названием «Парижские мемуары», написанная в 1702 году, посвящена исследованию характеристик газообразного вещества, помещенного в фиксированный объем, который составляет часть «воздушного термометра». Равновесие жидкости в данных условиях объясняется воздействием на нее давления газа, находящегося в сосуде, и атмосферного давления. Если температура среды повышается, показатели давления в резервуаре возрастают. При этом определенный объем жидкости вытесняется в выступающую трубку. Зависимость между такими характеристиками процесса, как температура и давление, представлена на рисунке.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

График

Источник: infourok.ru

В 1801 году были опубликованы два эссе исследователя Джона Дальтона с описанием эксперимента, результаты которого демонстрируют одинаковое расширение всех газов и паров при постоянном давлении и изменении температуры, когда начальная и конечная температура одинакова. В итоге был сформулирован закон Гей-Люссака. Ученый, в честь которого явление получило название, экспериментальным путем подтвердил одинаковое расширение различных газообразных веществ и вывел коэффициент, практически равный коэффициенту, полученному Дальтоном. Благодаря объединению данной закономерности с законом Бойля-Мариотта, был описан изохорный процесс.

График изохорного процесса в идеальном газе

Зависимость характеристик при изохорном процессе можно представить схематично. График на диаграмме в системе координат будет иметь следующий вид:

График изохорного процесса

Источник: prezentacii.org

В случае идеального газа графически изохорные процессы будут изображены следующим образом:

Графики

Источник: wi-ki.ru/wiki

Первый закон термодинамики для изохорного процесса

В условиях термодинамического процесса формула элементарной работы имеет следующий вид:

(delta A=PdV)

Преобразование данного выражения позволит рассчитать величину полной работы процесса:

(A=int_{V_{1}}^{V_{1}}{PdV})

В случае, когда объем сохраняет  стабильность, то есть (dV=0), значение интеграла будет нулевым. Исходя из этого, в изохорном процессе работа газа не наблюдается:

(A=0)

Изменение внутренней энергии для идеального газа рассчитывается по формуле:

(Delta U=frac{i}{2}nu RDelta T)

где i представляет собой количество степеней свободы, зависящее от числа атомов, которыми обладает молекула газа. В качестве примера можно рассмотреть такие вещества:

  • одноатомная молекула неона обладает тремя степенями;
  • пять степеней характерно для двухатомной молекулы кислорода;
  • в молекуле с тремя и более атомами, как у водяного пара, насчитывается 6 степеней.

Формула внутренней энергии выходит из понятия и уравнения теплоемкости, представляет собой следующее отношение:

(Delta U=nu c_{upsilon }^{mu }Delta T)

где (c_{upsilon }^{mu }) является молярной теплоемкостью в условиях постоянного объема.

Расчет количества теплоты выполняют с помощью первого начала термодинамики в условиях термодинамического процесса:

(Q=Delta U+A)

Следует учитывать, что в условиях изохорного процесса газообразное вещество не выполняет работу. Исходя из этого, можно вывести формулу:

(Q=Delta U=nu c_{upsilon }^{mu }Delta T)

Согласно уравнению, газ получает теплоту. Она полностью расходуется, чтобы изменять внутреннюю энергию газообразного вещества.

Изменения термодинамических параметров в изохорном процессе

В условиях изохорного процесса наблюдается теплообмен с внешней средой. Данное явление называют изменением энтропии. Из его понятия следует уравнение:

(dS=frac{delta Q}{T})

где (delta Q) является элементарным количеством теплоты.

Преобразуя уравнение для расчета количества теплоты в дифференциальный вид, получают следующую формулу:

(delta Q=nu c^{mu }_{upsilon }dT)

где (nu) является количеством вещества, а (nu c^{mu }_{upsilon })  обозначает молярную теплоемкость в условиях постоянного объема.

Формула микроскопического изменения энтропии в условиях протекания изохорного процесса имеет вид:

(dS=frac{nu c^{mu }_{upsilon }dT}{T}dy/dx dy/dx)

Если проинтегрировать последнюю формулу, то расчет полного изменения энтропии выполняют таким образом:

(int_{S_{1}}^{S_{2}}{dS}=nu int_{T_{1}}^{T_{2}}frac{c^{mu }_{upsilon }dT}{T}Rightarrow Delta S=nu int_{T_{1}}^{T_{2}}frac{c^{mu }_{upsilon }dT}{T})

В этой ситуации не представляется возможным вынести определение молярной теплоемкости в условиях стабильного объема за интеграл, так как оно представлено в виде функции, зависящей от температуры.

Применение эффекта изохорного процесса

Идеальный цикл Отто приближенно воспроизведен в конструкции мотора внутреннего сгорания, работающего на бензине. Такты 2-3 и 4-1 при его функционировании представляют собой изохорные процессы. На выходе двигателя совершается работа. Она рассчитывается, как разность работ. К одной из них относят работу, производимую газообразным веществом над поршнем в процессе третьего такта или рабочего хода, к другой – работу, затраченную поршнем во время сжатия газа при втором такте. Таким образом, на примере двигателя, функционирующего, согласно принципу Отто, в системе принудительного сжигания смеси, газообразное вещество сжимается до 7-12 раз.

Двигатель

Источник: mashintop.ru

На рисунке изображен классический двигатель Стирлинга с конструкцией бета-типа, для которой характерно расположение рабочего и вытеснительного поршня в одном цилиндре.

Динамику цикла Отто можно представить в следующем виде:

Динамика цикла

Источник: wi-ki.ru

Цикл Стирлинга также характеризуется наличием двух изохорных тактов. Процесс протекает при дооснащении конструкции двигателя Стирлинга регенератором. Во время прохождения газообразного вещества в одном направлении через наполнитель осуществляется передача тепла от рабочего тела к регенератору. Если газ проходит в обратную сторону, то тепловая энергия передается на рабочее тело. Идеальный цикл Стирлинга достигает обратимости и характеризуется теми же параметрами КПД, что и цикл Карно.

Изопроцессы

  • Темы кодификатора ЕГЭ: изопроцессы — изотермический, изохорный, изобарный процессы.

  • Изотермический процесс

  • Графики изотермического процесса

  • Изобарный процесс

  • Графики изобарного процесса

  • Изохорный процесс

  • Графики изохорного процесса

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: изопроцессы — изотермический, изохорный, изобарный процессы.

На протяжении этого листка мы будем придерживаться следующего предположения: масса и химический состав газа остаются неизменными. Иными словами, мы считаем, что:

m = const, то есть нет утечки газа из сосуда или, наоборот, притока газа в сосуд;

mu = const, то есть частицы газа не испытывают каких-либо изменений (скажем, отсутствует диссоциация — распад молекул на атомы).

Эти два условия выполняются в очень многих физически интересных ситуациях (например, в простых моделях тепловых двигателей) и потому вполне заслуживают отдельного рассмотрения.

Если масса газа и его молярная масса фиксированы, то состояние газа определяется тремя макроскопическими параметрами: давлением, объёмом и температурой. Эти параметры связаны друг с другом уравнением состояния (уравнением Менделеева — Клапейрона).

Термодинамический процесс (или просто процесс) — это изменение состояния газа с течением времени. В ходе термодинамического процесса меняются значения макроскопических параметров — давления, объёма и температуры.

Особый интерес представляют изопроцессы — термодинамические процессы, в которых значение одного из макроскопических параметров остаётся неизменным. Поочерёдно фиксируя каждый из трёх параметров, мы получим три вида изопроцессов.

1. Изотермический процесс идёт при постоянной температуре газа: T = const.
2. Изобарный процесс идёт при постоянном давлении газа: p = const.
3. Изохорный процесс идёт при постоянном объёме газа: V = const.

Изопроцессы описываются очень простыми законами Бойля — Мариотта, Гей-Люссака и Шарля. Давайте перейдём к их изучению.

к оглавлению ▴

Изотермический процесс

Пусть идеальный газ совершает изотермический процесс при температуре T. В ходе процесса меняются только давление газа и его объём.

Рассмотрим два произвольных состояния газа: в одном из них значения макроскопических параметров равны p_1, V_1, T, а во втором — p_2, V_2, T. Эти значения связаны уравнением Менделеева-Клапейрона:

p_1V_1=frac{displaystyle m}{displaystyle mu vphantom{1^a}}RT,

p_2V_2=frac{displaystyle m}{displaystyle mu vphantom{1^a}}RT.

Как мы сказали с самого начала,масса m и молярная масса mu предполагаются неизменными.

Поэтому правые части выписанных уравнений равны. Следовательно, равны и левые части:

p_1V_1=p_2V_2. (1)

Поскольку два состояния газа были выбраны произвольно, мы можем заключить, что в ходе изотермического процесса произведение давления газа на его объём остаётся постоянным:

pV = const. (2)

Данное утверждение называется законом Бойля — Мариотта.

Записав закон Бойля — Мариотта в виде

p=frac{displaystyle const}{displaystyle V vphantom{1^a}}, (3)

можно дать и такую формулировку: в изотермическом процессе давление газа обратно пропорционально его объёму. Если, например, при изотермическом расширении газа его объём увеличивается в три раза, то давление газа при этом в три раза уменьшается.

Как объяснить обратную зависимость давления от объёма с физической точки зрения? При постоянной температуре остаётся неизменной средняя кинетическая энергия молекул газа, то есть, попросту говоря, не меняется сила ударов молекул о стенки сосуда. При увеличении объёма концентрация молекул уменьшается, и соответственно уменьшается число ударов молекул в единицу времени на единицу площади стенки — давление газа падает. Наоборот, при уменьшении объёма концентрация молекул возрастает, их удары сыпятся чаще и давление газа увеличивается.

к оглавлению ▴

Графики изотермического процесса

Вообще, графики термодинамических процессов принято изображать в следующих системах координат:

pV-диаграмма: ось абсцисс V, ось ординат p;
VT-диаграмма: ось абсцисс T, ось ординат V;
pT-диаграмма: ось абсцисс T, ось ординат p.

График изотермического процесса называется изотермой.

Изотерма на pV-диаграмме — это график обратно пропорциональной зависимости p=frac{displaystyle const}{displaystyle V vphantom{1^a}}.

Такой график является гиперболой (вспомните алгебру — график функции y=frac{displaystyle k}{displaystyle x vphantom{1^a}}). Изотерма-гипербола изображена на рис. 1.

Рис. 1. Изотерма на pV-диаграмме

Каждая изотерма отвечает определённому фиксированному значению температуры. Оказывается, что чем выше температура, тем выше лежит соответствующая изотерма на pVдиаграмме.

В самом деле, рассмотрим два изотермических процесса, совершаемых одним и тем же газом (рис. 2). Первый процесс идёт при температуре T_1, второй — при температуре T_2.

Рис. 2. Чем выше температура, тем выше изотерма

Фиксируем некоторое значение объёма V. На первой изотерме ему отвечает давление p_1, на второй — p_2 > p_1. Но при фиксированном объёме давление тем больше, чем выше температура (молекулы начинают сильнее бить по стенкам). Значит, T_2 > T_1.

В оставшихся двух системах координат изотерма выглядит очень просто: это прямая, перпендикулярная оси T (рис. 3):

Рис. 3. Изотермы на VT и pT-диаграммах

к оглавлению ▴

Изобарный процесс

Напомним ещё раз, что изобарный процесс — это процесс, проходящий при постоянном давлении. В ходе изобарного процесса меняются лишь объём газа и его температура.

Типичный пример изобарного процесса: газ находится под массивным поршнем, который может свободно перемещаться. Если масса поршня M и поперечное сечение поршня S, то давление газа всё время постоянно и равно

p=p_0 + frac{displaystyle Mg}{displaystyle S vphantom{1^a}},

где p_0 — атмосферное давление.

Пусть идеальный газ совершает изобарный процесс при давлении p. Снова рассмотрим два произвольных состояния газа; на этот раз значения макроскопических параметров будут равны p, V_1, T_1 и p, V_2, T_2.

Выпишем уравнения состояния:

pV_1=frac{displaystyle m}{displaystyle mu vphantom{1^a}}RT_1,

pV_2=frac{displaystyle m}{displaystyle mu vphantom{1^a}}RT_2.

Поделив их друг на друга, получим:

frac{displaystyle V_1}{displaystyle V_2 vphantom{1^a}}=frac{displaystyle T_1}{displaystyle T_2 vphantom{1^a}}.

В принципе, уже и этого могло бы быть достаточно, но мы пойдём немного дальше. Перепишем полученное соотношение так, чтобы в одной части фигурировали только параметры первого состояния, а в другой части — только параметры второго состояния (иными словами, «разнесём индексы» по разным частям):

frac{displaystyle V_1}{displaystyle T_1 vphantom{1^a}}=frac{displaystyle V_2}{displaystyle T_2 vphantom{1^a}}. (4)

А отсюда теперь — ввиду произвольности выбора состояний! — получаем закон Гей-Люссака:

frac{displaystyle V}{displaystyle T vphantom{1^a}}=const. (5)

Иными словами, при постоянном давлении газа его объём прямо пропорционален температуре:

V=const cdot T. (6)

Почему объём растёт с ростом температуры? При повышении температуры молекулы начинают бить сильнее и приподнимают поршень. При этом концентрация молекул падает, удары становятся реже, так что в итоге давление сохраняет прежнее значение.

к оглавлению ▴

Графики изобарного процесса

График изобарного процесса называется изобарой. На VT-диаграмме изобара V = const cdot T является прямой линией (рис. 4):

Рис. 4. Изобара на VT-диаграмме

Пунктирный участок графика означает, что в случае реального газа при достаточно низких температурах модель идеального газа (а вместе с ней и закон Гей-Люссака) перестаёт работать. В самом деле, при снижении температуры частицы газа двигаются всё медленнее, и силы межмолекулярного взаимодействия оказывают всё более существенное влияние на их движение (аналогия: медленный мяч легче поймать, чем быстрый). Ну а при совсем уж низких температурах газы и вовсе превращаются в жидкости.

Разберёмся теперь, как меняется положение изобары при изменении давления. Оказывается, что чем больше давление, тем ниже идёт изобара на VTдиаграмме.
Чтобы убедиться в этом, рассмотрим две изобары с давлениями p_1 и p_2 (рис. 5):

Рис. 5. Чем ниже изобара, тем больше давление

Зафиксируем некоторое значение температуры T. Мы видим, что V_2 < V_1. Но при фиксированной температуре объём тем меньше, чем больше давление (закон Бойля — Мариотта!).

Стало быть, p_2 > p_1.

В оставшихся двух системах координат изобара является прямой линией, перпендикулярной оси p(рис. 6):

Рис. 6. Изобары на pV и pT-диаграммах

к оглавлению ▴

Изохорный процесс

Изохорный процесс, напомним, — это процесс, проходящий при постоянном объёме. При изохорном процессе меняются только давление газа и его температура.

Изохорный процесс представить себе очень просто: это процесс, идущий в жёстком сосуде фиксированного объёма (или в цилиндре под поршнем, когда поршень закреплён).

Пусть идеальный газ совершает изохорный процесс в сосуде объёмом V. Опять-таки рассмотрим два произвольных состояния газа с параметрами p_1, V, T_1 и p_2, V, T_2. Имеем:

p_1V=frac{displaystyle m}{displaystyle mu vphantom{1^a}}RT_1,

p_2V=frac{displaystyle m}{displaystyle mu vphantom{1^a}}RT_2.

Делим эти уравнения друг на друга:

frac{displaystyle p_1}{displaystyle p_2 vphantom{1^a}}=frac{displaystyle T_1}{displaystyle T_2 vphantom{1^a}}.

Как и при выводе закона Гей-Люссака, «разносим» индексы в разные части:

frac{displaystyle p_1}{displaystyle T_1 vphantom{1^a}}=frac{displaystyle p_2}{displaystyle T_2 vphantom{1^a}}. (7)

Ввиду произвольности выбора состояний мы приходим к закону Шарля:

frac{displaystyle p}{displaystyle T vphantom{1^a}}=const. (8)

Иными словами, при постоянном объёме газа его давление прямо пропорционально температуре:

p=const cdot T. (9)

Увеличение давления газа фиксированного объёма при его нагревании — вещь совершенно очевидная с физической точки зрения. Вы сами легко это объясните.

к оглавлению ▴

Графики изохорного процесса

График изохорного процесса называется изохорой. На pT-диаграмме изохора p = const cdot T является прямой линией (рис. 7):

Рис. 7. Изохора на pT-диаграмме

Смысл пунктирного участка тот же: неадекватность модели идеального газа при низких температурах.

Далее, чем больше объём, тем ниже идёт изохора на pTдиаграмме (рис. 8):

Рис. 8. Чем ниже изохора, тем больше объём

Доказательство аналогично предыдущему. Фиксируем температуру T и видим, что p_2 < p_1. Но при фиксированной температуре давление тем меньше, чем больше объём (снова закон Бойля — Мариотта). Стало быть, V_2 > V_1.

В оставшихся двух системах координат изохора является прямой линией, перпендикулярной оси V(рис. 9):

Рис. 9. Изохоры на pV и VT-диаграммах

Законы Бойля — Мариотта, Гей-Люссака и Шарля называются также газовыми законами.

Мы вывели газовые законы из уравнения Менделеева — Клапейрона. Но исторически всё было наоборот: газовые законы были установлены экспериментально, и намного раньше. Уравнение состояния появилось впоследствии как их обобщение.

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Изопроцессы» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

Содержание:

Изотермический, изобарный и изохорный процессы:

Свойство газов существенно изменять предоставленный им объём широко используют в тепловых двигателях. Анализируя процессы, происходящие с газом в этих устройствах, важно знать, каким законам подчиняются газы и каковы условия применимости этих законов.

Процессы в газах часто происходят так, что изменяются только два параметра из пяти Изопроцессы в физике - формулы и определение с примерами

Изотермический процесс

Процесс изменения состояния физической системы при постоянной температуре Изопроцессы в физике - формулы и определение с примерами называют изотермическим.

Если при переходе из начального состояния в конечное масса и молярная масса идеального газа не изменяются, то из уравнения Клапейрона—Менделеева следует:
Изопроцессы в физике - формулы и определение с примерами
 

Давление данной массы газа при постоянных молярной массе и температуре обратно пропорционально его объёму.

Это утверждение называют законом Бойля—Мариотта.

Справедливость закона Бойля—Мариотта можно продемонстрировать экспериментально, используя установку, представленную на рисунке 18 в § 5.

Если медленно изменять объём газа, находящегося в сосуде, то вследствие теплообмена с окружающей средой можно поддерживать температуру газа в сосуде практически постоянной. При этом уменьшение объёма газа при вращении винта 3 повлечёт за собой увеличение его давления и некоторое незначительное увеличение температуры. И наоборот, увеличение объёма приведёт к уменьшению давления и некоторому незначительному уменьшению температуры газа*.

* Незначительное изменение температуры газа принципиально необходимо для теплообмена с термостатом — передача тепла возможна только при разных температурах тел.

График изотермического процесса, совершаемого идеальным газом, в координатах Изопроцессы в физике - формулы и определение с примерами представляет собой гиперболу (рис. 22). В физике такую кривую называют изотермой. Разным значениям температуры газа соответствуют разные изотермы. Согласно соотношениям (6.1) для одинаковых объёмов газов с одинаковыми количествами вещества и разными температурами чем больше давление, тем выше температура (рис. 22).

Изопроцессы в физике - формулы и определение с примерами

Многочисленные опыты показали, что исследованные газы подчиняются закону Бойля —Мариотта тем точнее, чем меньше их плотность. При значительном увеличении давления газа этот закон перестаёт выполняться.

Интересно знать:

Лёгкие расположены в грудной клетке, объём которой при дыхании периодически изменяется благодаря работе межрёберных мышц и диафрагмы. Когда грудная клетка расширяется, давление воздуха в лёгких становится меньше атмосферного, и воздух через воздухоносные пути устремляется в лёгкие — происходит вдох. При выдохе объём грудной клетки уменьшается, что вызывает уменьшение объёма лёгких. Давление воздуха в них становится выше атмосферного, и воздух из лёгких устремляется в окружающую среду.

Изобарный процесс

Процесс изменения состояния газа при постоянном давлении (р = const) называют изобарным.

В 1802 г. французский учёный Жозеф Гей-Люссак (1778-1850) рассмотрел этот процесс для воздуха, водорода, кислорода и азота.

Если при переходе из начального состояния в конечное масса и молярная масса газа не изменяются, то объём газа, как следует из уравнения Клапейрона—Менделеева:

Изопроцессы в физике - формулы и определение с примерами

Объём данной массы газа при постоянных молярной массе и давлении прямо пропорционален абсолютной температуре.

Это утверждение называют законом Гей-Люссака.

Справедливость закона Гей-Люссака можно продемонстрировать экспериментально, используя установку, представленную на рисунке 23. Жидкость в сосуде находится в тепловом равновесии с тонкой трубкой, заполненной воздухом, запертым капелькой масла. При увеличении температуры жидкости объём воздуха, находящегося в трубке под капелькой масла, возрастает и капелька движется вверх. При уменьшении температуры объём воздуха уменьшается — и капелька движется вниз.

Изопроцессы в физике - формулы и определение с примерами

Поскольку Изопроцессы в физике - формулы и определение с примерами то в координатах Изопроцессы в физике - формулы и определение с примерами график изобарного процесса, совершаемого идеальным газом, представляет собой прямую линию, продолжение которой проходит через начало координат (рис. 24). Эту линию называют изобарой.

Изопроцессы в физике - формулы и определение с примерами

Изобара реальных газов не может быть продлена до нулевого значения температуры (на графике пунктирная линия), потому что при низких температурах все газы существенно отличаются от модели «идеальный газ» и при дальнейшем уменьшении температуры превращаются в жидкости.

В одних и тех же координатах Изопроцессы в физике - формулы и определение с примерами можно построить несколько изобар, которые соответствуют разным давлениям данной массы идеального газа при неизменной молярной массе. Анализ соотношений (6.2) позволяет сделать вывод, что большему давлению соответствует меньший наклон изобары к оси температур (см. рис. 24).

Изохорный процесс

Процесс изменения состояния газа при постоянном объёме (V = const) называют изохорным.

Впервые этот процесс рассмотрел в 1787 г. французский учёный Жак Шарль (1746-1823)*.

* Несмотря на то что Шарль не опубликовал результаты своих исследований, история физики отдаёт приоритет открытия ему.

Если при переходе из начального состояния в конечное масса и молярная масса идеального газа не изменяются, то давление газа, как следует из уравнения Клапейрона—Менделеева:

Изопроцессы в физике - формулы и определение с примерами

Давление данной массы газа при постоянных молярной массе и объёме прямо пропорционально абсолютной температуре.

Это утверждение называют законом Шарля.

Изопроцессы в физике - формулы и определение с примерами

Справедливость закона Шарля можно продемонстрировать экспериментально, используя установку, представленную на рисунке 25. Колба, наполненная воздухом и соединённая с манометром, находится в тепловом равновесии с жидкостью в сосуде. При увеличении температуры жидкости давление воздуха в колбе возрастает, а при уменьшении температуры — давление воздуха уменьшается.

В координатах Изопроцессы в физике - формулы и определение с примерами график изохорного процесса, совершаемого идеальным газом, представляет собой прямую линию, продолжение которой проходит через начало координат (рис. 26). Эту линию называют изохорой.

Изопроцессы в физике - формулы и определение с примерами

Как и в случае изобарного процесса, изохора реальных газов не может быть продлена до нулевого значения температуры.

В одних и тех же координатах Изопроцессы в физике - формулы и определение с примерами можно построить несколько изохор, соответствующих разным объёмам данной массы газа при неизменной моляр- О ной массе. Анализ соотношений (6.3) показывает, что большему объёму соответствует меньший наклон изохоры к оси температур (см. рис. 26).

Изопроцессы в физике - формулы и определение с примерами

Пример №1

На рисунке 28 представлен график трёх процессов изменения состояния некоторой массы идеального газа. Как изменялись параметры газа на участках Изопроцессы в физике - формулы и определение с примерамиИзопроцессы в физике - формулы и определение с примерами Изобразите эти процессы в координатах Изопроцессы в физике - формулы и определение с примерами

Изопроцессы в физике - формулы и определение с примерами

Решение. На участке Изопроцессы в физике - формулы и определение с примерами объём газа прямо пропорционален абсолютной температуре, следовательно, процесс перехода газа из состояния 1 в состояние 2 является изобарным. Из графика следует, что в состоянии 2 температура и объём газа больше в 4 раза, чем в состоянии 1. Следовательно, в процессе изобарного расширения некоторой массы газа из состояния 1 в состояние 2 температура и объём газа увеличились. Это можно записать таким образом:

переход  Изопроцессы в физике - формулы и определение с примерами
происходит изобарное нагревание газа.

В процессе перехода газа из состояния 2 в состояние 3 остаётся постоянным объём (процесс изохорный), а температура газа уменьшается в 4 раза. Из соотношения (6.3) следует, что при изохорном охлаждении давление газа уменьшается пропорционально его абсолютной температуре. Поэтому можно записать:
переход Изопроцессы в физике - формулы и определение с примерами
происходит изохорное охлаждение газа.

Процесс перехода газа из состояния 3 в состояние 1 — изотермический. При этом объём газа уменьшается в 4 раза, что влечёт за собой, согласно закону Бойля—Мариотта, увеличение давления газа в 4 раза:

  • переход Изопроцессы в физике - формулы и определение с примерами происходит изотермическое сжатие газа.

Опираясь на сделанные выводы, представим все три процесса в координатах Изопроцессы в физике - формулы и определение с примерами (рис. 29, а, б).
Изопроцессы в физике - формулы и определение с примерами

Пример №2

При изотермическом расширении идеального газа определённой массы его объём увеличился от Изопроцессы в физике - формулы и определение с примерами а давление уменьшилось на Изопроцессы в физике - формулы и определение с примерами Определите первоначальное давление газа.

Изопроцессы в физике - формулы и определение с примерами

Решение. Так как температура и масса газа не изменяются, то его начальное и конечное состояния связаны законом Бойля—Мариотта, т. е. Изопроцессы в физике - формулы и определение с примерами С учётом того, что Изопроцессы в физике - формулы и определение с примерами получим:

Изопроцессы в физике - формулы и определение с примерами

Откуда

Изопроцессы в физике - формулы и определение с примерами

Ответ: Изопроцессы в физике - формулы и определение с примерами

Обобщение и систематизация определений:

Изопроцессы в физике - формулы и определение с примерами

Изопроцессы в физике - формулы и определение с примерами

  • Твердые тела и их свойства в физике
  • Строение и свойства жидкостей в физике
  • Испарение и конденсация в физике
  • Влажность воздуха в физике
  • Уравнение состояния идеального газа
  • Температура в физике
  • Парообразование и конденсация 
  • Тепловое равновесие в физике

В общем виде
основное уравнение изохорного процесса

p
=
f1(v=const;
T).
Рассматривая уравнение Клапейрона
(3.2) для идеального газа в состоянии 1 и
2 , и учитывая уравнение изохоры v1=v2
=
const,
получим соотношение параметров для
изохорного процесса:

1.

p2
/
p2
=
T2
/
T1.


( 3.4).
2. Поскольку объём
постоянен, т.е. dv
=
0,
то работа изменения объёма равна нулю

(l1-2=).
Удельная техническая работа lTEX
=

v(p2
p1)
(пл.1-2, p1/p2
рис3.2 )
Из общего уравнения первого закона
термодинамики (разд. 2). количество
теплоты, подведенное в изохорный
процесс, полностью затрачивается на
изменение внутренней энергии, т.е. при
dv
= 0 δq
= du
qV1-2
=
u2
(
v2T2
) –
u1(
v1T1)
отсюда

u2
(
v2T2
) –
u1(
v1T1)
=


(3.5).

поэтому dq
= Cvd
T,
qV1-2
= cV
(T2
– T1).

3. Изменение
энтропии в процессе определим из
соотношения ds
= dq/T
= CV
dT;
интегрируя его, получим

s2
– s1=
CVln
(T2/T1
)

(3.6).

На T-S
диаграмме линия V
= const
изображается логарифмической кривой
процесса ( рис. 3.2 ).

Р
Т
2

Р2

1

1
qV1-2

l
ТЕХ

Р1
2

0

V
0 S1
S2
S

Рисунок 3.2.
График
изохорного процесса

Пример 3.1. В
баллоне емкостью 15 л
содержится
воздух при давлении 0,4 МПа и температуре
300
С. Какова будет температура воздуха в
результате подвода к нему

16 кДж теплоты ?
Удельная изохорная теплоемкость Cvm
= 717 Дж/(кг.К); газовая постоянная R
= 287,1 Дж/(кгК).

Р е ш е н и е . 1.
Предварительно вычислим массу воздуха
m
по формуле (3.3)

m
= p1
V/
(RT1
) = 0,4*106
*0,015/(287,1*303)=0,069 кг.

2. Найдем конечную
температуру t2
из уравнения (3.5)

Q1,2
= mcvm
(t2
– t1
) откуда

t2
= t1
+

3.4 Изобарный процесс

Общее уравнение
изобарного процесса v = f(T,
p
=const).

1. Из равенства P1
·V1
= RT1
и PV2
= RT2
получим

,
удельный объем v
возрастает при подведении теплоты и
уменьшается при охлаждении рабочего
тела.

2. Удельная работа
в процессе ( на P
– V
диаграмме пл. 1,2v2
v1)

l1-2
= p(v2

— v1)
= R(
T2
– T1),

(3.9).
техническая
работа ℓTEX
= —

= 0

p

1
lP1-2

2 dℓ = pdv;
ℓ=
=p(
v2
– v1)

0
V1

V2
V

Удельное количество
теплоты определяем
из первого
закона т/динамики:δq = dh.
Количество теплоты в изобарном процессе
равно изменению энтальпии

рабочего тела
qp2-1
= h2
–h1
( на T-S
диаграмме пл. 12S2S1).

T

V
=const 1

Т2
2

Т1
P = const

S

0 S1
S2

3.Изменение
внутренней энергии равно

Δu
= CV
( T2
– T1)
; CV
≠ f (T)

4.
Изменение
энтальпии
Δh = CP
(T2
– T1);
CP
≠ f (T)

5. Изменение
энтропии в изобарном процессе

s2(p;T2)
— S1(p;
T1)
=

(3.8).

Если в интервале
Т1……Т2
теплоемкость
СР
постоянна, то

S2
– S1
= CР·
ln(
T2
– T1)

Изобара на Т-S
диаграмме изображается логарифмической
кривой. Если СP>CV
, то при одинаковом изменении температуры
ΔSP>S
V
, следовательно, на Т-S
диаграмме изобара располагается более
полого, чем изотерма.

Пример 3.2. Азот
массой 0,5 кг расширяется по изобаре при
абсолютном давлении 0,3 МПа так, что его
температура повышается от 100 до 3000С.

Найти конечный
объём азота, совершенную работу и
подведенную теплоту. Удельная газовая
постоянная R
= 296,8 Дж/(кг.К).

Р е ш е н и е. 1.
Находим начальный объем азота из
уравнения (3.5):

V1
= mRT1/p1
=0,5*296,8*373/(0,3*106)
= 0,184 м3

2. Теперь найдем
конечный объем:

V2
= V1*T1/T2
=0,184*573/373 = 0,284 м3.

3. Определим работу
изменения объёма (уравнение 3.7)

L1,2=p
(V2
– V1)
= 0,3*106
(0.287- 0.184)= 30*103
Дж

4. Работа изменения
давления l
ТЕХ
= 0.

5. Определим
теплоту, подведенную к газу по уравнению

Q1,2
= mcpm(t2
– t1),
заменяя Т21
на t2
-t1

При
средней температуре tm
(t1
+ t2)/2
= 200ОС

средняя
удельная изобарная теплоемкость азота
равна

Cpm
= Cpm/M=29,
38*103/28,02
= 1047 Дж/(кгК)

Таким
образом,

Q1,2=0,5*1047(300-100)=104,7*103
Дж.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Изохорный (изохорический) процесс относится к основным процессам термодинамики и возможен исключительно при постоянном объеме. При этом два других параметра, а именно, давление и температура, изменяются.

В термодинамике давление, объем и температуру называют макроскопическим параметрами. В каждом из трех изопроцессов один из макроскопических параметров остается неизменным.

Изопроцессами, в свою очередь, называют изменение термодинамических систем макроскопических тел.

Как уже отмечалось, в изохорном процессе неизменен объем, в изотермическом постоянной остается температура, в изобарическом – давление.  

Наиболее удобно рассматривать термодинамические процессы на примере идеальных газов.

Условие осуществления изохорного процесса в идеальном газе

Необходимым и достаточным условием для протекания изопроцесса в идеальном газе или жидкости является постепенное изменение – увеличение или уменьшение – температуры вещества, в котором происходит процесс. Первоначальный объем вещества должен оставаться неизменным, для чего вещество помещается в замкнутое пространство, т. е. в закрытый сосуд.  

Зависимость температуры и давления идеального газа в изохорном процессе

В изохорном процессе давление идеального газа всегда прямо пропорционально его температуре. В реальных газах эта зависимость не выполняется.

На графиках такое физическое явление как изохорный нагрев (охлаждение) отображает изохора. Это линия, связывающая три физических параметра:

  • температуру рабочего тела (вещества) – T;
  • объем рабочего тела (вещества) – V;
  • внутренне давление – Р.

Для идеальных газов изохоры всегда являются прямыми линиями.

Графики изохорного процесса

Рисунок 1. Графики изохорного процесса идеальных газов.

Возникновение и развитие теории изохорного процесса

В 1702 году французский физик-механик, член Французской Академии наук, Гийом Амонтон опубликовал свою работу «Парижские мемуары». В ней ученый подробно описал свои наблюдения за поведением фиксированного объема идеального газа в «стабильном воздушном термометре», в котором жидкость, под влиянием энергии газа в резервуаре и атмосферного давления,  находилась в равновесии. При постепенном нагревании давление газа увеличивалось пропорционально температуре, и жидкость вытеснялась, заполняя следующий выступающий столб.

Дальнейшее развитие изучение изохорного процесса газа получило благодаря экспериментам английского физика Джона Дальтона. В своих экспериментах ученый определил, что при совпадающих начальных и конечных показателях, а также при постоянном давлении, все газы и пары при изменении температуры сжимаются или расширяются одинаково.  Результаты исследований Джон Дальтон опубликовал в 1801 году.

Через некоторое время полученные Дальтоном результаты смог подтвердить и член Французской Академии наук, физик Жозеф Луи Гей-Люссак. Ученый провел свои независимые опыты и также выявил одинаковое распределение различных газов с практически тем же коэффициентом, что и Дальтон. Свои исследования Гей-Люссак объединил с законом Бойля-Мариотта, благодаря чему впоследствии удалось более подробно описать изохорный процесс. А закон пропорциональной зависимости объема газа от температуры в изохорическом процессе получил название закона Гей-Люсака.

Первый закон термодинамики для изохорного процесса

Формула

Формула первого закона термодинамики имеет следующий вид:

[boldsymbol{Q=Delta U+A}]

Где Q – количество теплоты, [boldsymbol{Delta U}] – сумма изменения внутренней энергии, A – работа системы.

Закон подразумевает, что для каких-либо изменений внутри системы необходимо приложить внешние усилия. Таким образом, можно предложить следующую простейшую формулировку первого закона термодинамики: для изменения внутренней энергии некоторой системы требуется внешнее воздействие. Именно этот закон доказывает невозможность изобретения вечного двигателя, над которым так долго бились ведущие ученые разных стран.

Изохорный процесс:

  • Процесс, происходящий с газом неизменной массы при постоянном объеме называется изохорным.
  • Закон Шарля: при изохорном нагревании газа относительное изменение его давления пропорционально конечной температуре.

[frac{p V}{T}=text { const }\frac{p_{1}}{T_{1}}=frac{p_{2}}{T_{2}}]

Как уже отмечалось, изохорным процессом в термодинамике считается физическое явление, протекающее при постоянном объеме. То есть при изменении температуры некоторого газа, находящегося внутри сосуда, его объем не изменится. Следовательно, работа, совершаемая газом при [V=c o n s t], равна нулю, т.е. A=0.

Формула

Таким образом, первый закон термодинамики для изохорного процесса выражается следующей формулой:

[boldsymbol{Q=Delta U=Uleft(T_{2}right)-Uleft(T_{1}right)}]

Где [boldsymbol{Uleft(T_{1}right)}] – внутренняя энергия идеального газа при начальной температуре, [boldsymbol{Uleft(T_{2}right)}] – внутренняя энергия идеального газа при конечной температуре.

При изохорном нагреве внутренняя энергия газа возрастает за счет поглощения тепла [(Q>0)], а при охлаждении газ отдает тепло и его внутренняя энергия уменьшается [(Q<0)].

Изучения термодинамических изменений подразумевает под собой определение следующих параметров: работы, которая была совершена в данном процессе, изменения внутренней энергии и количества теплоты. Также определяется взаимосвязь некоторых величие, характеризующих состояние газа.  

Исследование изохорических процессов проводится по следующему методу:

  • устанавливается взаимосвязь показателями рабочего тела на начальный и конечный момент, то есть выводится физическое уравнение;
  • определяется работа, совершаемая газом, при изменении объема;
  • определяется количество подводимой/отводимой  теплоты;
  • вычисляется изменение внутренней энергии и энтропии (функции состояния исследуемой системы).

Нет времени решать самому?

Наши эксперты помогут!

Эффект изохорного процесса и его применение

Свойства изохорного процесса, так же как и свойства изобарного и изотермического процессов, широко применяются в современных изобретениях.

Главный эффект изохорного процесса заключается в том, что при неизменном объеме теплоемкость значительно ниже, чем при постоянном давлении. Теплоемкость – величина, показывающая, какое количество теплоты необходимо для нагрева тела на один градус.

В изохорном процессе при изменении температуры система не совершает никакой работы, и, следовательно, вся подведенная теплота расходуется на изменение тепловой энергии: [d U=D q].

Согласно закону Шарля, в идеальном газе при изохорном процессе изменение давления прямо пропорционально изменению температуры. Однако для неидеальных газов закон Шарля не применим. Так как в этом случае некоторая часть теплоты, сообщаемой газу, расходуется на увеличение энергетического потенциала взаимодействия элементарных частиц.

В бензиновом двигателе внутреннего сгорания, в работе которого в максимальном приближении внедрен идеальный цикл Отто, такты 2-3 и 4-1 являются изохорными процессами. 2-3 – изохорный подвод тепла, 4-1 – изохорный отвод тепла. Работа, которая совершается на выходе мотора, равна разности основных работ. То есть разности между работой, совершаемой газом во время рабочего хода (над поршнем во время третьего такта), и работой, затрачиваемой поршнем на сжатие газа во втором такте. Принудительное сжигание смеси, используемое в таких двигателях, позволяет увеличить степень сжатия газа в 7-12 раз.

Цикл Отто

Рисунок 2. Цикл Отто

Изохорные такты также присутствуют в двигателях с циклом Стирлинга. В таких двигателях установлен регенератор, обеспечивающий выполнение изохорного процесса в двух тактах. Проходя через наполнитель в одну сторону, газ передает регенератору тепловую энергию рабочего тела. Двигаясь в обратном направлении, газ снова возвращает энергию рабочей системе. КПД и обратимость идеального цикла Стирлинга равны показателям цикла Карно.

Цикл Стирлинга

Рисунок 3. Цикл Стирлинга

Также изохорный подвод тепла используется в циклах ГТУ – газотурбинных установок.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Я не знаю как составить этот отчет
  • Как найти наименьшее число от процента
  • Как могут найти краденный телефон
  • Как вставить фото чтобы он нашел похожие
  • Студень не застыл что делать как исправить

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии