Сумма векторов. Длина вектора. Дорогие друзья, в составе типов задний экзамена присутствует группа задач с векторами. Задания довольно широкого спектра (важно знать теоретические основы). Большинство решается устно. Вопросы связаны с нахождением длины вектора, суммы (разности) векторов, скалярного произведения. Так же много заданий, при решении которых необходимо осуществить действия с координатами векторов.
Теория касающаяся темы векторов несложная, и её необходимо хорошо усвоить. В этой статье разберём задачи связанные с нахождением длины вектора, также суммы (разности) векторов. Некоторые теоретические моменты:
Понятие вектора
Вектор — это направленный отрезок.
Все векторы, имеющие одинаковое направление и равные по длине являются равными.
*Все представленные выше четыре вектора равны!
То есть, если мы будем при помощи параллельного переноса перемещать данный нам вектор, то всегда получим вектор равный исходному. Таким образом, равных векторов может быть бесчисленное множество.
Обозначение векторов
Вектор может быть обозначен латинскими заглавными буквами, например:
При данной форме записи сначала записывается буква обозначающая начало вектора, затем буква обозначающая конец вектора.
Ещё вектор обозначается одной буквой латинского алфавита (прописной):
Возможно также обозначение без стрелок:
Сумма векторов
Суммой двух векторов АВ и ВС будет являться вектор АС.
Записывается как АВ+ВС=АС.
Это правило называется – правилом треугольника.
То есть, если мы имеем два вектора – назовём их условно (1) и (2), и конец вектора (1) совпадает с началом вектора (2), то суммой этих векторов будет вектор, начало которого совпадает с началом вектора (1), а конец совпадает с концом вектора (2).
Вывод: если мы имеем на плоскости два вектора, то всегда сможем найти их сумму. При помощи параллельного переноса можно переместить любой из данных векторов и соединить его начало с концом другого. Например:
Перенесём вектор b, или по-другому – построим равный ему:
Как находится сумма нескольких векторов? По тому же принципу:
* * *
Правило параллелограмма
Это правило является следствием изложенного выше.
Для векторов с общим началом их сумма изображается диагональю параллелограмма, построенного на этих векторах.
Построим вектор равный вектору b так, чтобы его начало совпадало с концом вектора a, и мы можем построить вектор, который будет являться их суммой:
Ещё немного важной информации, необходимой для решения задач.
Вектор, равный по длине исходному, но противоположно направленный, обозначается также но имеет противоположный знак:
Эта информация крайне полезна для решения задач, в которых стоит вопрос о нахождении разности векторов. Как видите, разность векторов это та же сумма в изменнёном виде.
Пусть даны два вектора, найдём их разность:
Мы построили вектор противоположный вектору b, и нашли разность.
Координаты вектора
Чтобы найти координаты вектора, нужно из координат конца вычесть соответствующие координаты начала:
То есть, координаты вектора представляют собой пару чисел.
Если
И координаты векторов имеют вид:
То c1= a1+ b1 c2= a2+ b2
Если
То c1= a1– b1 c2= a2– b2
Модуль вектора
Модулем вектора называется его длина, определяется по формуле:
Формула для определения длины вектора, если известны координаты его начала и конца:
Рассмотрим задачи:
Две стороны прямоугольника ABCD равны 6 и 8. Диагонали пересекаются в точке О. Найдите длину разности векторов АО и ВО.
Найдём вектор, который будет являться результатом АО–ВО:
АО–ВО=АО+(–ВО)=АВ
То есть разность векторов АО и ВО будет являться вектор АВ. А его длина равна восьми.
Ответ: 8
Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора АВ+AD.
Найдём вектор, который будет являться суммой векторов AD и AB. Вектор BC равен вектору AD. Значит AB+AD=AB+BC=AC
Длина вектора AC это длина диагонали ромба АС, она равна 16.
Ответ: 16
Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите длину вектора АО+ВО.
Найдём вектор, который будет являться суммой векторов АО и ВО. Вектор ВО равен вектору OD, значит
Длина вектора AD это длина стороны ромба. Задача сводится к нахождению гипотенузы в прямоугольном треугольнике AOD. Вычислим катеты:
По теореме Пифагора:
Ответ: 10
Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите длину вектора АО–ВО.
Найдём вектор, который будет являться результатом АО–ВО:
Длина вектора АВ это длина стороны ромба. Задача сводится к нахождению гипотенузы АВ в прямоугольном треугольнике AOB. вычислим катеты:
По теореме Пифагора:
Ответ: 10
Стороны правильного треугольника ABC равны 3.
Найдите длину вектора АВ–АС.
Найдём результат разности векторов:
Длина вектора СВ равна трём, так как в условии сказано, что треугольник равносторонний и его стороны равны 3.
Ответ: 3
27663. Найдите длину вектора а(6;8).
Посмотреть решение
27664. Найдите квадрат длины вектора АВ.
Посмотреть решение
27707. Две стороны прямоугольника ABCD равны 6 и 8. Найдите длину вектора АС.
Посмотреть решение
27708. Две стороны прямоугольника ABCD равны 6 и 8. Найдите длину суммы векторов AB и AD.
Посмотреть решение
27709. Две стороны прямоугольника ABCD равны 6 и 8. Найдите длину разности векторов AB и AD.
Посмотреть решение
27711. Две стороны прямоугольника ABCD равны 6 и 8. Диагонали пересекаются в точке O. Найдите длину суммы векторов АО и ВО.
Посмотреть решение
27713. Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора АВ.
Посмотреть решение
27715. Диагонали ромба ABCD равны 12 и 16.
Найдите длину вектора АВ–AD.
Посмотреть решение
27716. Диагонали ромба ABCD равны 12 и 16.
Найдите длину вектора АВ–АС.
Посмотреть решение
Стороны правильного треугольника ABC равны 2√3. Найдите длину вектора АВ+АС.
Посмотреть решение
В будущем мы продолжим рассматривать задачи с векторами, не пропустите! Задания будут связаны с координатами векторов, скалярным произведением.
На этом всё. Успеха вам!
С уважением, Александр
Вступительный экзамен по математике. Преподаватели приглашают первого абитуриента:
— Сколько будет два плюс два?
— Три! — Нет! — Пять! — Нет! — Шесть!
— Неправильно! Да… дурак, но ищущий… берем!
Заходит второй абитуриент:
— Сколько будет два плюс два?
— Три! — Нет! — Три! — Нет! — Три!
— Неправильно! Да… дурак, но настырный… берем!
Заходит третий абитуриент:
— Сколько будет два плюс два?
— Четыре, конечно!
— Да… умный. Но мест уже нет!
P.S: Буду благодарен, если расскажете о статье в социальных сетях.
yovenou
Вопрос по геометрии:
Помогите очень нужно!!!!
Две стороны прямоугольника ABCD равны 48 и 20. Найдите длину суммы векторов AB и AD?
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!
Ответы и объяснения 1
viteding748
По теореме Пифагора из прямоугольного треугольника АВС:
АС²=АВ²+ВС²=48²+20²=2304+400=2704
АС=52
Ответ.
Знаете ответ? Поделитесь им!
Гость ?
Как написать хороший ответ?
Как написать хороший ответ?
Чтобы добавить хороший ответ необходимо:
- Отвечать достоверно на те вопросы, на которые знаете
правильный ответ; - Писать подробно, чтобы ответ был исчерпывающий и не
побуждал на дополнительные вопросы к нему; - Писать без грамматических, орфографических и
пунктуационных ошибок.
Этого делать не стоит:
- Копировать ответы со сторонних ресурсов. Хорошо ценятся
уникальные и личные объяснения; - Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не
знаю» и так далее; - Использовать мат — это неуважительно по отношению к
пользователям; - Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует?
Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие
вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи —
смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.
В этой задаче нужно найти длину суммы векторов AB и AD, если две стороны прямоугольника ABCD равны 36 и 27.
Геометрическая фигура — прямоугольник
Прямоугольник — это геометрическая фигура, у которой все углы прямые.
Свойства прямоугольника
- У прямоугольника противоположные стороны равны и параллельны.
- Диагонали прямоугольника также имеют равную длину.
- Длинная сторона прямоугольника называется длиной.
- Короткая сторона прямоугольника называется шириной.
- Прилегающие стороны прямоугольника перпендикулярны.
Определи сумму длин векторов AB и AD
Выше было сказано, что прилегающие стороны прямоугольника перпендикулярны, то есть AB перпендикулярна AD и соответственно угол между этими сторонами равен 90 градусов.
Сумма длин векторов равна длине вектора АС. Отрезок AC в прямоугольнике является его диагональю. Существует формула для определения длины диагонали прямоугольника через две стороны прямоугольника (теорема Пифагора): d = √(a^2 + b^2). Переходя на наши обозначения: AC = √(AB^2 + AD^2); AC = √(36^2 + 27^2); |AC| = 45.
Получили, что сумма длин векторов AB и AD равна 45.
Ответ: 45.
0 голосов
1.0k просмотров
Де стороны прямоугольника ABCD равны 20 и 21.Найдите длину суммы векторов AB и AD.
- стороны
- прямоугольника
- равны
- найдите
- длину
- суммы
- геометрия
- 5 — 9 классы
Геометрия
RashKrash_zn
06 Июнь, 20
|
1.0k просмотров
Дан 1 ответ
0 голосов
Ответ:
AC = 29
Объяснение:
Сумма векторов AB и AD равна вектору AC. Вектор AC образует в прямоугольнике два прямоугольных треугольника. Поэтому по теореме Пифагора
nastyabykova2222_zn
06 Июнь, 20
Две стороны пр — ника ABCD равны 48и 20 .
Найдите длину суммы векторов AB и AD.
На этой странице находится вопрос Две стороны пр — ника ABCD равны 48и 20 ?, относящийся к категории
Геометрия. По уровню сложности данный вопрос соответствует знаниям
учащихся 5 — 9 классов. Здесь вы найдете правильный ответ, сможете
обсудить и сверить свой вариант ответа с мнениями пользователями сайта. С
помощью автоматического поиска на этой же странице можно найти похожие
вопросы и ответы на них в категории Геометрия. Если ответы вызывают
сомнение, сформулируйте вопрос иначе. Для этого нажмите кнопку вверху.