Как найти эдс индукции в движущихся проводниках

Рассмотрим движущийся в однородном магнитном поле проводник. В нём на каждый заряд действует сила Лоренца. Под её действием внутри проводника начинают двигаться свободные заряды, из-за чего появляется электродвижущая сила. Эта сила имеет магнитное происхождение и является сторонней.
Если в однородном магнитном поле находится контур, состоящий из рамки и движущегося по ней проводника (скорость проводника постоянна и равна (V)) (рис. (1)), то сила Лоренца, которая действует на каждую частицу в движущемся проводнике, равна:
(boxed{vec{F}_л=qvec{V}times vec{B}}).  ((1))

Frame 520.png

Рис. (1). Физическая модель движения проводника в магнитном поле

Формула ((1)) описывает силу, которая действует на положительный заряд. Она направлена вдоль проводника, а её работа по перемещению заряда между концами этого проводника равна:
(A_{ст}=F_л l=q V B l sinalpha),  ((2))

где (l) — это длина движущегося проводника, а (alpha) — это угол между вектором индукции магнитного поля и вектором скорости проводника.
Из формулы ((2)) следует формула для ЭДС:
(boxed{E_i=frac{A_{ст}}{q}= V B lsinalpha}).  ((3))

Эту же формулу можно получить из другого типа рассуждений. Рассмотрим этот же эксперимент, однако положим, что движущийся проводник и рамка создают замкнутый контур с некоторой площадью (S). За некоторое время (Delta t ) площадь изменится на:
(Delta S= — V l Delta t),  ((4))
где знак «(-)» указывает на уменьшение площади.
Как следствие, изменится магнитный поток через рассматриваемый контур:
(Delta Phi=- B V l Delta t sin alpha).  ((5))

По закону электромагнитной индукции величина возникающей ЭДС может быть определена как:
(E_i=-frac{Delta Phi}{Delta t}=B V l sin alpha).  ((6))

Источники:

Рис. 1. Физическая модель движения проводника в магнитном поле. © ЯКласс.

ЭДС индукции в движущихся проводниках


ЭДС индукции в движущихся проводниках

4.5

Средняя оценка: 4.5

Всего получено оценок: 117.

4.5

Средняя оценка: 4.5

Всего получено оценок: 117.

ЭДС индукции возникает в контуре при изменении магнитного потока через него. Более редким случаем магнитной индукции является движение уединенного проводника в магнитном поле. Кратко рассмотрим ЭДС индукции в движущихся проводниках.

Механизм индукции в движущемся проводнике

Из курса физики в 11 классе известно, что электрический ток — это движение носителей заряда. Если магнитный поток через контур изменяется, то в контуре возникает вихревое электрическое поле, благодаря которому и движутся носители и возникает электрический ток. Однако это не единственный способ создать в проводнике движение зарядов.

Вторым способом создания в проводнике движущихся зарядов является использование силы Лоренца. Если эта сила начнет действовать на носители заряда в проводнике, то в нем возникнет ЭДС и электрический ток.

Сила Лоренца

Рис. 1. Сила Лоренца.

Сила Лоренца действует только на движущиеся заряды. Следовательно, если проводник, в котором есть носители заряда, начнет двигаться в магнитном поле, то на заряды начнет действовать сила, и они придут в движение — в проводнике возникнет ЭДС.

Заметим, что ЭДС, возникающая в этом случае в проводнике, имеет иную причину, по сравнению с изменением магнитного потока через контур. Если при изменении потока причиной возникновения ЭДС является вихревое электрическое поле, то в движущемся проводнике причиной ЭДС является сила Лоренца.

ЭДС индукции в движущемся проводнике

Вычислим ЭДС индукции в проводнике длиной $l$, который движется с постоянной скоростью $v$ так, что вектор магнитной индукции $overrightarrow B$ однородного поля перпендикулярен проводнику и направлен под углом $alpha$ к скорости движения проводника.

По формуле силы Лоренца ее величина равна:

$$F=|q|Bvsinalpha$$

Компонента этой силы, направленная вдоль проводника, совершает положительную работу, которая на пути $l$ равна:

$$А=Fl=|q|Bvlsinalpha$$

Заметим, что вторая компонента силы Лоренца совершает равную по модулю отрицательную работу. Поэтому суммарная работа силы Лоренца равна нулю.

ЭДС по определению равна отношению работы, совершенной полем по переносу зарядом, к величине этого заряда. Следовательно:

$$mathscr{E} = {Aover q}=Bvlsinalpha$$

Рис. 2. Движение проводника в магнитном поле.

Движение контура в магнитном поле

Формулу ЭДС индукции в движущихся проводниках можно применить к прямоугольному контуру, разбив его на четыре элементарных проводника (по числу сторон). В этом случае ЭДС, возникающие в противоположных сторонах контура, будут направлены в противоположные стороны. В результате суммарная ЭДС в контуре будет равна нулю. Следовательно, при движении контура в однородном магнитном поле ток в нем возникнуть не может.

Этот же вывод можно сделать и из закона электромагнитной индукции. Если контур движется в однородном магнитном поле, то магнитный поток, пронизывающий его, не изменяется, следовательно, ЭДС индукции, возникающая в нём, равна нулю.

Единственная возможность создать ЭДС в контуре, движущемся в однородном магнитном поле, это совершить его поворот таким образом, чтобы ЭДС возникала за счет изменения компоненты $sinalpha$. Действительно, такой поворот будет изменять магнитный поток через контур, а значит, в нём будет возникать ЭДС индукции.

Вращение рамки в магнитном поле

Рис. 3. Вращение рамки в магнитном поле.

Заключение

Что мы узнали?

В уединенном проводнике, движущемся в однородном магнитном поле, возникает ЭДС индукции. Эта ЭДС обусловлена возникновением силы Лоренца, действующей на заряды внутри проводника. В рамке, движущейся без вращения в однородном магнитном поле, ЭДС на противоположных сторонах имеет разные направления, поэтому ток по рамке в этих условиях не течет.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Кронг Кронг

    10/10

Оценка доклада

4.5

Средняя оценка: 4.5

Всего получено оценок: 117.


А какая ваша оценка?

Эдс индукции в движущихся проводниках.

При движении проводника
его свободные заряды движутся вместе
с ним. Поэтому на них со стороны магнитного
поля действует сила Лоренца, которая
вызывает перемещение зарядов внутри
проводника.


М
М1






α



V

B


N
N1

Fл
= B

q
v
Sin
α

Работа
Fл
на пути
l
(l
–длина проводника) равна:

А = Fл
l

А
=
B
q
v
l

Sin
α

I
=

А

=
B
v
l

Sin
α

q

ЭДС
индукции в проводниках, движущихся в
постоянном магнитном поле, возникает
за счет действия на свободные заряды
проводника силы Лоренца

Направление
индукционного тока, возникающего в
прямолинейном проводнике при его
движении в магнитном поле, определяется
правилом
правой руки:

если правую руку расположить вдоль
проводника так, чтобы линии магнитной
индукции входили в ладонь, а отогнутый
большой палец показывал направление
движения проводника, то четыре вытянутых
пальца укажут направление индукционного
тока в проводнике.

Самоиндукция. Индуктивность.

Если по катушке идет
переменный ток, то магнитный поток,
пронизывающий катушку, меняется. Поэтому
возникает ЭДС индукции в том же самом
проводнике, по которому идет переменный
ток.

Возникновение
ЭДС индукции в цепи, которое вызвано
изменением магнитного поля тока, текущего
в этой же цепи, называется явлением
самоиндукции.

При самоиндукции
проводящий контур играет двоякую роль:
по нему протекает ток, вызывающий
индукцию, и в нем же появляется ЭДС
индукции.

По
правилу Ленца в момент нарастания тока
напряженность вихревого электрического
поля направлена против тока. Следовательно,
в этот момент вихревое поле препятствует
нарастанию тока. А в момент уменьшения
тока вихревое поле поддерживает его.

Это
приводит к тому, что при замыкании цепи,
содержащей источник постоянной ЭДС,
определенное значение силы тока
устанавливается не сразу, а постепенно.

При
отключении источника ток в замкнутых
контурах прекращается не мгновенно.

ЭДС
самоиндукции может превышать ЭДС
источника, т.к. изменение тока и его
магнитного поля при отключении источника
происходит очень быстро.

Потокосцепление
— величина,
характеризующая связь («сцепление»)
магнитного потока с замкнутой цепью,
сквозь которую он проходит.

Ψ
= ω • Ф

Работа
при повороте одного витка: А
=
I
Δ Ф

Работа
при повороте соленоида с числом витков:
А = I
• ω

Δ Ф

А
=
I
• Δ Ψ

Индуктивность.
Ф = В
• S • Cos
α


Ф
~ В ~ I Ф
~ I

Ф = LI

, где L
индуктивность контура

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Электромагнитная индукция

Содержание

  • Явление электромагнитной индукции
  • Магнитный поток
  • Закон электромагнитной индукции Фарадея
  • Правило Ленца
  • Самоиндукция
  • Индуктивность
  • Энергия магнитного поля
  • Основные формулы раздела «Электромагнитная индукция»

Явление электромагнитной индукции

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

Опыты Фарадея

  • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
  • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
  • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Объяснения возникновения индукционного тока

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

Свойства вихревого электрического поля:

  • источник – переменное магнитное поле;
  • обнаруживается по действию на заряд;
  • не является потенциальным;
  • линии поля замкнутые.

Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

Магнитный поток

Магнитным потоком через площадь ​( S )​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​( B )​, площади поверхности ​( S )​, пронизываемой данным потоком, и косинуса угла ​( alpha )​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Обозначение – ​( Phi )​, единица измерения в СИ – вебер (Вб).

Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м2, расположенную перпендикулярно вектору магнитной индукции:

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​( alpha )​ магнитный поток может быть положительным (( alpha ) < 90°) или отрицательным (( alpha ) > 90°). Если ( alpha ) = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Закон электромагнитной индукции Фарадея

Закон электромагнитной индукции (закон Фарадея):

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​( N )​ витков, то ЭДС индукции:

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​( R )​:

При движении проводника длиной ​( l )​ со скоростью ​( v )​ в постоянном однородном магнитном поле с индукцией ​( vec{B} )​ ЭДС электромагнитной индукции равна:

где ​( alpha )​ – угол между векторами ​( vec{B} )​ и ( vec{v} ).

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Важно!
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
  • вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца;
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Правило Ленца

Направление индукционного тока определяется по правилу Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Алгоритм решения задач с использованием правила Ленца:

  • определить направление линий магнитной индукции внешнего магнитного поля;
  • выяснить, как изменяется магнитный поток;
  • определить направление линий магнитной индукции магнитного поля индукционного тока: если магнитный поток уменьшается, то они сонаправлены с линиями внешнего магнитного поля; если магнитный поток увеличивается, – противоположно направлению линий магнитной индукции внешнего поля;
  • по правилу буравчика, зная направление линий индукции магнитного поля индукционного тока, определить направление индукционного тока.

Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

Самоиндукция

Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.

При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.

В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.

Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.

При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.

Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.

Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.

При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.

ЭДС самоиндукции ​( varepsilon_{is} )​, возникающая в катушке с индуктивностью ​( L )​, по закону электромагнитной индукции равна:

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

Индуктивность

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ​( Phi )​ через контур из этого проводника пропорционален модулю индукции ​( vec{B} )​ магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.

Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

Индуктивность – коэффициент пропорциональности ​( L )​ между силой тока ​( I )​ в контуре и магнитным потоком ​( Phi )​, создаваемым этим током:

Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:

Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.

Энергия магнитного поля

При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.

Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:

Основные формулы раздела «Электромагнитная индукция»

Алгоритм решения задач по теме «Электромагнитная индукция»:

1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.

2. Записать формулу:

  • закона электромагнитной индукции;
  • ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.

3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.

4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).

5. Решить полученную систему уравнений относительно искомой величины.

6. Решение проверить.

Электромагнитная индукция

3.2 (63.64%) 99 votes

«Прежде
чем решать задачу, прочитай условие!».

Жак
Адамар

Данная
тема посвящена решению задач на ЭДС индукции в движущихся проводниках.

Задача
1.

В однородном магнитном поле движется проводник со скоростью 10 км/ч под
углом 45º к вектору магнитной индукции, модуль которого равен 50 мТл.
Найдите длину проводника, если при таком движении в нём возникает ЭДС индукции 0,5 В.

ДАНО:

СИ

РЕШЕНИЕ

Закон электромагнитной индукции для движущихся проводников

Выразим длину проводника из этой формулы

Ответ:
5 м.

Задача
2.

Алюминиевый проводник с площадью поперечного сечения 5 мм2
движется в магнитном поле со скоростью 8 м/с под углом 30º к вектору
магнитной индукции. Найдите индукционный ток, возникающий в проводнике, если
индукция поля равна 20 мТл.

ДАНО:

РЕШЕНИЕ

Запишем закон электромагнитной индукции для движущихся
проводников

Индукционный ток можно определить по формуле

Сопротивление проводника можно рассчитать по формуле

С учетом последней формулы получаем, что индукционный ток
равен

Ответ:
14,8 А.

Задача
3.

Проводник с сопротивлением 10 Ом входит в магнитное поле со скоростью 5 м/с
так, как показано на рисунке. Индукция магнитного поля равна 8×10–4 Тл.
Постройте график зависимости индукционного тока от времени, учитывая то, что
длина проводника равна 10 м.

ДАНО:

РЕШЕНИЕ

Закон электромагнитной индукции для движущихся проводников

Индукционный ток

Поскольку проводник только
начал входить в магнитное поле и двигается равномерно, длина активной части
будет определяться произведением скорости и времени движения

Нетрудно убедиться, что уже
через две секунды проводник полностью окажется в магнитном поле. Таким
образом, длина активной части проводника будет линейно зависеть от времени в
первые две секунды рассматриваемого промежутка времени. После этого,
проводник полностью окажется в магнитном поле. Подставив данную функцию
зависимости в выражение для индукционного тока, получим аналогичную функцию
зависимости индукционного тока от времени.

Индукционный ток в начальный момент времени равен

Через 2 с индукционный ток

Поскольку зависимость
линейная, график представляет собой прямую, и двух точек достаточно для его
построения.

Задача
4.

Проводник длиной 40 см и сопротивлением 5 Ом помещён в магнитное поле с
индукцией 50 мТл. Этот проводник подключают к источнику тока с внутренним сопротивлением
0,5 Ом. С какой скоростью нужно перемещать данный проводник перпендикулярно
линиям магнитной индукции, чтобы в нём не протекал ток? Известно, что в
состоянии покоя по проводнику течёт ток 0,8 А.

ДАНО:

СИ

РЕШЕНИЕ

Полная ЭДС цепи определяется по формуле

В цепи не будет существовать
ток, если полная ЭДС цепи будет равна нулю (то есть, не будет совершаться
работа по перемещению зарядов). Из этого можем заключить, что ЭДС индукции
должна быть равна ЭДС источника с противоположным знаком (напомним, что
отрицательная ЭДС означает, что данная ЭДС создаёт ток, направление которого
противоположно направлению обхода тока).

Запишем закон электромагнитной индукции

Запишем закон Ома для полной цепи

Тогда

Выразим искомую скорость движения проводника

Ответ:
2200 м/с.

Задача
5.

Проводник длиной 80 см падает в магнитном поле с индукцией 100 мТл, так, как
показано на рисунке. Достигнув скорости 15 м/с, он больше не ускоряется. Если
масса данного проводника равна 450 г, то каково его сопротивление?

ДАНО:

СИ

РЕШЕНИЕ

Т.к. проводник движется с постоянной скоростью, то его
ускорение равно нулю

Запишем второй закон Ньютона

Из второго закона Ньютона следует

Силу Ампера можно определить по формуле

Закон электромагнитной индукции имеет вид

Индукционный ток

В рассматриваемом случаи ток в проводнике – это
индукционный ток

Проверим размерности

Ответ:
20 мОм.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти содержанку на авито
  • Как найти слова на песню про маму
  • Как найти скаченное видео на телефоне
  • Как найти хорошего кардиохирурга
  • Как найти кнопку шифт на клавиатуре

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии