Как найти каждый элемент произведения матриц

Нами были рассмотрены действия сложения, вычитания и умножения матриц на число. Еще одним действием над ними является умножение. Выполняется оно сложнее, а само правило может показаться немного странным. При его выполнении важно уметь определять размер матриц. Это понятие было рассмотрено в теме «Что такое матрица».

Онлайн-калькулятор

Как умножать матрицы

Приступим к рассмотрению умножения матриц.

Нам известно, что складывать и вычитать можно матрицы, которые имеют одинаковый размер. С умножением дела обстоят немного сложнее.

Какие матрицы можно умножать

Матрицу P можно умножить на матрицу K только в том случае, если число столбцов матрицы P равняется числу строк матрицы K. Матрицы, для которых данное условие не выполняется, умножать нельзя.

Пример 1

Определим, можно ли умножить матрицу

K=(15271810)K=begin{pmatrix}15&27\18&10end{pmatrix} на матрицу L=(3516)L=begin{pmatrix}35\16end{pmatrix}.

Матрица KK состоит из 2 строк и 2 столбцов, а матрица LL — из 2 строк и 1 столбца. Число столбцов матрицы KK равно числу строк матрицы LL, значит, матрицу KK можно умножить на матрицу LL.

Пример 2

Переставим матрицы местами и определим, можно ли умножить матрицу

F=(3516)F=begin{pmatrix}35\16end{pmatrix} на матрицу C=(15271810)C=begin{pmatrix}15&27\18&10end{pmatrix}.

Матрица FF состоит из 2 строк и 1 столбца, а матрица CC — из 2 строк и 2 столбцов. Число столбцов матрицы FF не равно числу строк матрицы CC, значит, матрицу FF нельзя умножить на матрицу CC.

Правило умножения матриц

Произведение матрицы AA размера m×nmtimes n и матрицы BB размера n×kntimes k — это матрица CC размера m×kmtimes k, в которой элемент cijc_{ij} равен сумме произведений элементов ii строки матрицы AA на соответствующие элементы jj столбца матрицы B:cij=ai1b1j+ai2b2j+…+ainbnjB: c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+…+a_{in}b_{nj}.

Умножение матриц осуществляется путем умножения строки на столбец. Находятся произведения первого элемента строки и первого элемента столбца, второго элемента строки и второго элемента столбца и т.д. Затем полученные произведения суммируются.

Алгоритм нахождения произведения матриц

  1. определить размеры матриц;
  2. если число столбцов первой матрицы совпадает с числом строк второй матрицы, то выполнять умножение.

Рассмотрим пример умножения матрицы

A=(a11a12a21a22a31a32a41a42)A=begin{pmatrix}a_{11}&a_{12}\a_{21}&a_{22}\a_{31}&a_{32}\a_{41}&a_{42}end{pmatrix}

на матрицу

B=(b11b12b13b21b22b23)B=begin{pmatrix}b_{11}&b_{12}&b_{13}\b_{21}&b_{22}&b_{23}end{pmatrix}.

Матрица AA состоит из 4 строк и 2 столбцов, а матрица BB — из 2 строк и 3 столбцов. Число столбцов матрицы AA равно числу строк матрицы BB, значит, можно найти произведение C=A⋅BC=Acdot B. Причем матрица CC будет иметь размер 4×34times 3. Найдем элементы c12c_{12} (выделен красными стрелками) и c33c_{33} (выделен синими стрелками):

умножение матриц .png

Для того чтобы найти элемент c12c_{12} нужно перемножать соответствующие элементы 1 строки матрицы AA и 2 столбца матрицы B:c12=a11⋅b12+a12⋅b22B: c_{12}=a_{11}cdot b_{12}+a_{12}cdot b_{22}. Для того чтобы найти элемент c33c_{33} нужно перемножать соответствующие элементы 3 строки матрицы AA и 3 столбца матрицы BB: c33=a31⋅b13+a32⋅b23c_{33}=a_{31}cdot b_{13}+a_{32}cdot b_{23}. Так находят все элементы.

Таким образом, матрица CC может быть найдена следующим образом:

A⋅B=(a11a12a21a22a31a32a41a42)⋅(b11b12b13b21b22b23)=Acdot B=begin{pmatrix}a_{11}&a_{12}\a_{21}&a_{22}\a_{31}&a_{32}\a_{41}&a_{42}end{pmatrix}cdot begin{pmatrix}b_{11}&b_{12}&b_{13}\b_{21}&b_{22}&b_{23}end{pmatrix}=

=(a11⋅b11+a12⋅b21a11⋅b12+a12⋅b22a11⋅b13+a12⋅b23a21⋅b11+a22⋅b21a21⋅b12+a22⋅b22a21⋅b13+a22⋅b23a31⋅b11+a32⋅b21a31⋅b12+a32⋅b22a31⋅b13+a32⋅b23a41⋅b11+a42⋅b21a41⋅b12+a42⋅b22a41⋅b13+a42⋅b23)=begin{pmatrix}a_{11}cdot b_{11}+a_{12}cdot b_{21}&a_{11}cdot b_{12}+a_{12}cdot b_{22}&a_{11}cdot b_{13}+a_{12}cdot b_{23}\a_{21}cdot b_{11}+a_{22}cdot b_{21}&a_{21}cdot b_{12}+a_{22}cdot b_{22}&a_{21}cdot b_{13}+a_{22}cdot b_{23}\a_{31}cdot b_{11}+a_{32}cdot b_{21}&a_{31}cdot b_{12}+a_{32}cdot b_{22}&a_{31}cdot b_{13}+a_{32}cdot b_{23}\a_{41}cdot b_{11}+a_{42}cdot b_{21}&a_{41}cdot b_{12}+a_{42}cdot b_{22}&a_{41}cdot b_{13}+a_{42}cdot b_{23}end{pmatrix}

Произведение B⋅ABcdot A нельзя найти, поскольку число столбцов матрицы BB неравно числу строк матрицы AA.

Пример 1

Найти произведение матрицы C=(15271810)C=begin{pmatrix}15&27\18&10end{pmatrix} на матрицу F=(3516)F=begin{pmatrix}35\16end{pmatrix}.

Матрица CC имеет размер 2×22times 2, матрица FF имеет размер 2×12times 1, значит, размер матрицы произведения будет 2×12times 1.

C⋅F=(15271810)⋅(3516)=(15⋅35+27⋅1618⋅35+10⋅16)=(957790)Ccdot F=begin{pmatrix}15&27\18&10end{pmatrix}cdot begin{pmatrix}35\16end{pmatrix}=begin{pmatrix}15cdot 35+27cdot 16\18cdot 35+10cdot 16end{pmatrix}=begin{pmatrix}957\790end{pmatrix}.

Как отмечалось выше, произведение матриц F⋅CFcdot C невозможно.

Пример 2

Найти произведение матриц K⋅LKcdot L и L⋅KLcdot K, если K=(12171314)K=begin{pmatrix}12&17\13&14end{pmatrix} на матрицу L=(18111210)L=begin{pmatrix}18&11\12&10end{pmatrix}.

Матрица KK имеет размер 2×22times 2, матрица LL имеет размер 2×22times 2, значит, размер матрицы произведения будет 2×22times 2.

K⋅L=(12171314)⋅(18111210)=(12⋅18+17⋅1212⋅11+17⋅1013⋅18+14⋅1213⋅11+14⋅10)=(420302402283)Kcdot L=begin{pmatrix}12&17\13&14end{pmatrix}cdot begin{pmatrix}18&11\12&10end{pmatrix}=begin{pmatrix}12cdot 18+17cdot 12&12cdot 11+17cdot 10\13cdot 18+14cdot 12&13cdot 11+14cdot 10end{pmatrix}=begin{pmatrix}420&302\402&283end{pmatrix}

Произведение L⋅KLcdot K существует и его размер — 2×22times 2.

L⋅K=(18111210)⋅(12171314)=(18⋅12+11⋅1318⋅17+11⋅1412⋅12+10⋅1312⋅17+10⋅14)=(359460274344)Lcdot K=begin{pmatrix}18&11\12&10end{pmatrix}cdot begin{pmatrix}12&17\13&14end{pmatrix}=begin{pmatrix}18cdot 12+11cdot 13&18cdot 17+11cdot 14\12cdot 12+10cdot 13&12cdot 17+10cdot 14end{pmatrix}=begin{pmatrix}359&460\274&344end{pmatrix}

Произведение двух матриц в общем случае зависит от порядка сомножителей, т.е. оно некоммутативно: A⋅B≠B⋅AAcdot Bneq Bcdot A.

Так, для матриц K=(12171314)K=begin{pmatrix}12&17\13&14end{pmatrix} и L=(18111210)L=begin{pmatrix}18&11\12&10end{pmatrix} из рассмотренного примера K⋅L≠L⋅KKcdot L neq Lcdot K.

Перестановочные матрицы

Перестановочные, или коммутирующие, матрицы – матрицы, для которых выполняется равенство A⋅B=B⋅AAcdot B=Bcdot A. Они обязательно квадратные.

Пример 1

Проверить, являются ли перестановочными матрицы CC и DD, если C=(2342)C=begin{pmatrix}2&3\4&2end{pmatrix}, D=(3343)D=begin{pmatrix}3&3\4&3end{pmatrix}.

Найдем произведения этих матриц C⋅DCcdot D и D⋅CDcdot C.

C⋅D=(2342)⋅(3343)=(2⋅3+3⋅42⋅3+3⋅34⋅3+2⋅44⋅3+2⋅3)=(18152018)Ccdot D=begin{pmatrix}2&3\4&2end{pmatrix}cdot begin{pmatrix}3&3\4&3end{pmatrix}=begin{pmatrix}2cdot 3+3cdot 4&2cdot 3+3cdot 3\4cdot 3+2cdot 4&4cdot 3+2cdot 3end{pmatrix}=begin{pmatrix}18&15\20&18end{pmatrix},

D⋅C=(3343)⋅(2342)=(3⋅2+3⋅43⋅3+3⋅24⋅2+3⋅44⋅3+3⋅2)=(18152018)Dcdot C=begin{pmatrix}3&3\4&3end{pmatrix}cdot begin{pmatrix}2&3\4&2end{pmatrix}=begin{pmatrix}3cdot 2+3cdot 4&3cdot 3+3cdot 2\4cdot 2+3cdot 4&4cdot 3+3cdot 2end{pmatrix}=begin{pmatrix}18&15\20&18end{pmatrix}.

Таким образом, для заданных матриц выполняется равенство C⋅DCcdot D и D⋅CDcdot C, поэтому они являются перестановочными.

Пример 2

Проверить, являются ли перестановочными матрицы FF и HH, если F=(3421)F=begin{pmatrix}3&4\2&1end{pmatrix}, H=(0593)H=begin{pmatrix}0&5\9&3end{pmatrix}.

Найдем произведения этих матриц F⋅HFcdot H и H⋅FHcdot F.

F⋅H=(3421)⋅(0593)=(3⋅0+4⋅93⋅5+4⋅32⋅0+1⋅92⋅5+1⋅3)=(3627913)Fcdot H=begin{pmatrix}3&4\2&1end{pmatrix}cdot begin{pmatrix}0&5\9&3end{pmatrix}=begin{pmatrix}3cdot 0+4cdot 9&3cdot 5+4cdot 3\2cdot 0+1cdot 9&2cdot 5+1cdot 3end{pmatrix}=begin{pmatrix}36&27\9&13end{pmatrix},

H⋅F=(0593)⋅(3421)=(0⋅3+5⋅20⋅4+5⋅19⋅3+3⋅29⋅4+3⋅1)=(1053339)Hcdot F=begin{pmatrix}0&5\9&3end{pmatrix}cdot begin{pmatrix}3&4\2&1end{pmatrix}=begin{pmatrix}0cdot 3+5cdot 2&0cdot 4+5cdot 1\9cdot 3+3cdot 2&9cdot 4+3cdot 1end{pmatrix}=begin{pmatrix}10&5\33&39end{pmatrix}.

Таким образом, для заданных матриц не выполняется равенство F⋅HFcdot H и H⋅FHcdot F, поэтому они не являются перестановочными.

Контрольные работы на заказ онлайн от практикующих исполнителей!

Содержание:

Определение: Матрицей называется таблица чисел (выражений), имеющая m строк и n столбцов:Матрица - виды, операции и действия с примерами решения

В дальнейшем будем писать матрицу в сокращенном видеМатрица - виды, операции и действия с примерами решения

Определение: Если матрица содержит 1 строку и n столбцов, то она называется матрицей-строкой Матрица - виды, операции и действия с примерами решения

Определение: Если матрица содержит m строк и 1 столбец, то она называется матрицей-столбцом Матрица - виды, операции и действия с примерами решения

Пример:

Следующие таблицы являются матрицами

Матрица - виды, операции и действия с примерами решения

Определение: Матрица, у которой совпадает количество столбцов с количеством строк, называется квадратной.

Всякой квадратной матрице соответствует определитель, составленный из тех же матричных элементов, который в теории матриц называется детерминантом матрицы Матрица - виды, операции и действия с примерами решения

Определение: Транспонированной к исходной квадратной матрице называется такая матрица, строки которой заменены на соответствующие столбцы, а столбцы — на соответствующие строки.

Замечание: Согласно свойству 1. для определителей (см. Лекцию № 1) для квадратных матриц детерминант исходной матрицы равен детерминанту транспонированной матрицы.

Определение: Матрицу, у которой все элементы, стоящие под главной диагональю равны нулю, будем называть треугольной

Матрица - виды, операции и действия с примерами решения

Определение: Матрица, все элементы которой равны нулю, за исключением элементов, стоящих на главной диагонали, называется диагональной Матрица - виды, операции и действия с примерами решения

Определение: Единичной матрицей называется диагональная матрица, у которой на главной диагонали все элементы равны единице, а остальные элементы равны нулю: Матрица - виды, операции и действия с примерами решения

Действия над матрицами

1. Суммой (разностью) двух матриц Матрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решения одинаковой структуры называется матрица той же размерности Матрица - виды, операции и действия с примерами решения элементы которой вычисляются по формуле: Матрица - виды, операции и действия с примерами решения

Пример:

Найти сумму (разность) матриц Матрица - виды, операции и действия с примерами решения

Решение:

Из приведенных матриц складывать (вычитать) можно только матрицы А и С, которые имеют одинаковую структуру. Найдем сумму:

Матрица - виды, операции и действия с примерами решения

и разность этих матриц:

Матрица - виды, операции и действия с примерами решения

2. При умножении вещественного числа k на матрицу Матрица - виды, операции и действия с примерами решения все элементы матрицы умножаются на это число.

Пример:

Умножить (-2) на матрицу Матрица - виды, операции и действия с примерами решения

Решение:

Результат умножения имеет вид Матрица - виды, операции и действия с примерами решения

3. Произведением матриц Матрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решения называется матрица Матрица - виды, операции и действия с примерами решенияэлементы которой вычисляются по формуле: Матрица - виды, операции и действия с примерами решения

Замечание: Перемножать можно лишь те матрицы, для которых количество столбцов первой перемножаемой матрицы совпадает с количеством строк второй перемножаемой матрицы. Матрица, получаемая в результате перемножения, имеет количество строк равное количеству строк первой матрицы и количество столбцов равное количеству столбцов второй матрицы.

Пример:

Найти (возможные) произведения матриц

Матрица - виды, операции и действия с примерами решения

Решение:

Матрица А имеет структуру 2×3, матрица В — 2×2, матрица С — 3×2. Согласно определению можно найти произведения Матрица - виды, операции и действия с примерами решения Не существуют произведения Матрица - виды, операции и действия с примерами решения Вычислим произведение Матрица - виды, операции и действия с примерами решения Прежде всего, определим структуру результирующей матрицы: имеем размерности Матрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решения убирая подчеркнутые цифры, получим структуру результирующей матрицы 2×3. Вычислим ее элементы. Для того чтобы найти элементы возможных произведений, надо просуммировать произведения элементов строки первой матрицы на соответствующие элементы столбца второй матрицы:

Матрица - виды, операции и действия с примерами решения

Остальные возможные произведения найти самостоятельно.

Замечание: Из приведенного примера видно, что в общем случае произведение матриц некоммутативно (неперестановочно), т. е.Матрица - виды, операции и действия с примерами решения

Определение: Обратной матрицей к исходной квадратной матрице Матрица - виды, операции и действия с примерами решения называется матрица Матрица - виды, операции и действия с примерами решения той же структуры, произведение которой с матрицей А коммутативно и равно единичной матрице, то есть Матрица - виды, операции и действия с примерами решения

Рассмотрим схему построения обратной матрицы Матрица - виды, операции и действия с примерами решения

Замечание: Обращаем внимание на то, что матрица алгебраических дополнений записана в транспонированном виде.

Пример:

Найти обратную матрицу к матрице Матрица - виды, операции и действия с примерами решения

Решение:

Вычислим детерминант данной матрицы Матрица - виды, операции и действия с примерами решения раскроем этот определитель по элементам первой строки:

Матрица - виды, операции и действия с примерами решения

Вычислим алгебраические дополнения всех элементов определителя: Матрица - виды, операции и действия с примерами решения Запишем обратную матрицу Матрица - виды, операции и действия с примерами решения

Проверим правильность нахождения обратной матрицы, для чего воспользуемся ее определением. Умножим найденную матрицу на исходную матрицу, вычислим элементы результирующей матрицы

Матрица - виды, операции и действия с примерами решения

Таким образом, Матрица - виды, операции и действия с примерами решения т.е. найдена верно.

Основные сведения о матрицах

Понятие матрицы и основанный на нем раздел математики — матричная алгебра — имеют чрезвычайно важное значение для экономистов. Объясняется это тем, что значительная часть математических моделей экономических объектов и процессов записывается в достаточно простой, а главное — компактной матричной форме.

Матрицей размера Матрица - виды, операции и действия с примерами решения называется прямоугольная таблица чисел, содержащая m строк и n столбцов. Числа, составляющие матрицу, называются элементами матрицы.

Матрицы обозначаются прописными (заглавными) буквами латинского алфавита, например, А, В, С, …, а для обозначения элементов матрицы используются строчные буквы с двойной индексацией: Матрица - виды, операции и действия с примерами решения , где Матрица - виды, операции и действия с примерами решения — номер строки, Матрица - виды, операции и действия с примерами решения — номер столбца.

Например, матрица

Матрица - виды, операции и действия с примерами решения

или, в сокращенной записи, Матрица - виды, операции и действия с примерами решения

Например, Матрица - виды, операции и действия с примерами решения Наряду с круглыми скобками используются и другие обозначения матрицы:Матрица - виды, операции и действия с примерами решения

Две матрицы А и В одного размера называются равными, если они совпадают поэлементно, т.е. Матрица - виды, операции и действия с примерами решения для любых Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения

С помощью матриц удобно записывать некоторые экономические зависимости. Например, таблица распределения ресурсов по отдельным отраслям экономики (усл. ед.) Матрица - виды, операции и действия с примерами решения

может быть записана в компактной форме в виде матрицы распределения ресурсов по отраслям: Матрица - виды, операции и действия с примерами решения

В этой записи, например, матричный элемент Матрица - виды, операции и действия с примерами решения показывает, сколько электроэнергии потребляет промышленность, а элемент Матрица - виды, операции и действия с примерами решения — сколько трудовых ресурсов потребляет сельское хозяйство.

Виды матриц

Матрица, состоящая из одной строки, называется матрицей (вектором)-строкой, а из одного столбца — матрицей (вектором)-столбцом: Матрица - виды, операции и действия с примерами решения— матрица-строка;

Матрица - виды, операции и действия с примерами решения— матрица-столбец.

Матрица называется квадратной Матрица - виды, операции и действия с примерами решения-го порядка, если число ее строк равно числу столбцов и равно Матрица - виды, операции и действия с примерами решения.

Например, Матрица - виды, операции и действия с примерами решения — квадратная матрица третьего порядка.

Элементы матрицы Матрица - виды, операции и действия с примерами решения, у которых номер столбца равен номеру строки Матрица - виды, операции и действия с примерами решения, называются диагональными и образуют главную диагональ матрицы. Для квадратной матрицы главную диагональ образуют элементы Матрица - виды, операции и действия с примерами решения

Если все недиагональные элементы квадратной матрицы равны нулю, то матрица называется диагональной. Например,

Матрица - виды, операции и действия с примерами решения—диагональная матрица третьего порядка.

Если у диагональной матрицы Матрица - виды, операции и действия с примерами решения-го порядка все диагональные элементы равны единице, то матрица называется единичной матрицей Матрица - виды, операции и действия с примерами решения-го порядка, она обозначается буквой Е.

Например,Матрица - виды, операции и действия с примерами решения— единичная матрица третьего порядка.

Матрица любого размера называется нулевой, или нуль-матрицей, если все ее элементы равны нулю:

Матрица - виды, операции и действия с примерами решения

Операции над матрицами

Над матрицами, как и над числами, можно производить ряд операций, причем некоторые из них аналогичны операциям над числами, а некоторые — специфические.

Умножение матрицы на число

Произведением матрицы А на число Матрица - виды, операции и действия с примерами решенияназывается матрица Матрица - виды, операции и действия с примерами решения элементы которой Матрица - виды, операции и действия с примерами решения для Матрица - виды, операции и действия с примерами решения

Например, если Матрица - виды, операции и действия с примерами решения, то Матрица - виды, операции и действия с примерами решения

Следствие. Общий множитель всех элементов матрицы можно выносить за знак матрицы.

Например, Матрица - виды, операции и действия с примерами решения

В частности, произведение матрицы А на число 0 есть нулевая матрица, т.е. Матрица - виды, операции и действия с примерами решения

Сложение матриц

Суммой двух матриц А и В одинакового размера Матрица - виды, операции и действия с примерами решенияназывается матрица Матрица - виды, операции и действия с примерами решения , элементы которой Матрица - виды, операции и действия с примерами решения для Матрица - виды, операции и действия с примерами решения(т.е. матрицы складываются поэлементно).

Например,

Матрица - виды, операции и действия с примерами решения В частном случае A + 0 = A.

Вычитание матриц

Разность двух матриц одинакового размера определяется через предыдущие операции: Матрица - виды, операции и действия с примерами решения

Умножение матриц

Умножение матрицы А на матрицу В определено, когда число столбцов первой матрицы равно числу строк второйМатрица - виды, операции и действия с примерами решения. Тогда произведением матриц Матрица - виды, операции и действия с примерами решения называется такая матрицаМатрица - виды, операции и действия с примерами решения, каждый элемент которой Матрица - виды, операции и действия с примерами решения равен сумме произведений элементов Матрица - виды, операции и действия с примерами решения-й строки матрицы А на соответствующие элементы Матрица - виды, операции и действия с примерами решения-го столбца матрицы В:

Матрица - виды, операции и действия с примерами решения

Пример №1

Вычислить произведение матриц Матрица - виды, операции и действия с примерами решения, где

Матрица - виды, операции и действия с примерами решения

Решение:

1. Найдем размер матрицы-произведения (если умножение матриц возможно): Матрица - виды, операции и действия с примерами решения

2. Вычислим элементы матрицы-произведения С, умножая элементы каждой строки матрицы А на соответствующие элементы столбцов матрицы В следующим образом:

Матрица - виды, операции и действия с примерами решения

Получаем Матрица - виды, операции и действия с примерами решения

Многие свойства, присущие операциям над числами, справедливы и для операций над матрицами (что следует из определений этих операций):

Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решенияэтом случае матрица А называется согласованной с матрицей В.

Однако имеются и специфические свойства матриц. Так, операция умножения матриц имеет некоторые отличия от умножения чисел:

а)Если произведение матриц Матрица - виды, операции и действия с примерами решения существует, то после перестановки сомножителей местами произведения матриц Матрица - виды, операции и действия с примерами решения может и не существовать. Действительно, в примере 1.1 получили произведение матриц Матрица - виды, операции и действия с примерами решения, а произведения Матрица - виды, операции и действия с примерами решения не существует, так как число столбцов первой матрицы не совпадает с числом строк второй матрицы.

б)Если даже произведения Матрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решения существуют, то они могут быть матрицами разных размеров.

Пример №2

Найти произведения матриц Матрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решения:

Матрица - виды, операции и действия с примерами решения

Решение:

Матрица - виды, операции и действия с примерами решения Матрица - виды, операции и действия с примерами решения ► в) В случае, когда оба произведения Матрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решения существуют и оба — матрицы одинакового размера (это возможно только при умножении квадратных матриц А и В одного порядка), коммутативный (переместительный) закон умножения, вообще говоря, не выполняется, т.е.Матрица - виды, операции и действия с примерами решения

Пример №3

Найти произведения матриц Матрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решения , где Матрица - виды, операции и действия с примерами решения

Решение:

Матрица - виды, операции и действия с примерами решения В частном случае коммутативным законом обладает произведение любой квадратной матрицы А Матрица - виды, операции и действия с примерами решения-гo порядка на единичную матрицу Е того же порядка, причем это произведение равно А:

Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решения

Таким образом, единичная матрица играет при умножении матриц ту же роль, что и число 1 при умножении чисел.

г) Произведение двух ненулевых матриц может равняться нулевой матрице, т.е. из того, что Матрица - виды, операции и действия с примерами решения, не следует, что Матрица - виды, операции и действия с примерами решения или,Матрица - виды, операции и действия с примерами решения. Например, Матрица - виды, операции и действия с примерами решения

Возведение в степень

Целой положительной степенью Матрица - виды, операции и действия с примерами решения квадратной матрицы Матрица - виды, операции и действия с примерами решения называется произведение Матрица - виды, операции и действия с примерами решения матриц, равных Матрица - виды, операции и действия с примерами решения, т.е.

Матрица - виды, операции и действия с примерами решения

Заметим, что операция возведения в степень определяется только для квадратных матриц.

По определению полагают Матрица - виды, операции и действия с примерами решения Нетрудно показать, что Матрица - виды, операции и действия с примерами решения

Пример №4

Найти Матрица - виды, операции и действия с примерами решения , где Матрица - виды, операции и действия с примерами решения

Решение:

Матрица - виды, операции и действия с примерами решения

Обращаем внимание на то, что из равенства Матрица - виды, операции и действия с примерами решения еще не следует, что матрица Матрица - виды, операции и действия с примерами решения

Транспонирование матрицы

Транспонирование матрицы — переход от матрицы Матрица - виды, операции и действия с примерами решения к матрице Матрица - виды, операции и действия с примерами решения, в которой строки и столбцы поменялись местами с сохранением порядка. Матрица Матрица - виды, операции и действия с примерами решенияназывается транспонированной относительно матрицы Матрица - виды, операции и действия с примерами решения: Матрица - виды, операции и действия с примерами решения Из определения следует, что если матрица Матрица - виды, операции и действия с примерами решения имеет размер Матрица - виды, операции и действия с примерами решения , то транспонированная матрица Матрица - виды, операции и действия с примерами решения имеет размер Матрица - виды, операции и действия с примерами решения.

Например, Матрица - виды, операции и действия с примерами решения

В литературе встречаются и другие обозначения транспонированной матрицы, например, Матрица - виды, операции и действия с примерами решения.

Свойства операции транспонирования:

Матрица - виды, операции и действия с примерами решения

Рекомендуем читателю доказать их самостоятельно. Рассмотренные выше операции над матрицами позволяют упростить решения некоторых экономических задач.

Пример №5

Предприятие выпускает продукцию трех видов: Матрица - виды, операции и действия с примерами решения и использует сырье двух типов: Матрица - виды, операции и действия с примерами решения. Нормы расхода сырья характеризуются матрицей Матрица - виды, операции и действия с примерами решения

где каждый элемент Матрица - виды, операции и действия с примерами решенияпоказывает, сколько единиц сырья

Матрица - виды, операции и действия с примерами решения-го типа расходуется на производство единицы продукции Матрица - виды, операции и действия с примерами решения-го вида. План выпуска продукции задан матрицей-строкой Матрица - виды, операции и действия с примерами решения, стоимость единицы каждого типа сырья (ден. ед.) — матрицей-столбцом Матрица - виды, операции и действия с примерами решения

Определить затраты сырья, необходимые для планового выпуска продукции, и общую стоимость сырья.

Решение:

Затраты 1-го сырья составляют Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения ед. и 2-го — Матрица - виды, операции и действия с примерами решенияед., поэтому матрица-строка затрат сырья Матрица - виды, операции и действия с примерами решения может быть записана как произведение Матрица - виды, операции и действия с примерами решения

Тогда общая стоимость сырья Матрица - виды, операции и действия с примерами решения ден. ед. может быть записана в матричном виде Матрица - виды, операции и действия с примерами решения Общую стоимость сырья можно вычислить и в другом порядке: вначале вычислим матрицу стоимостей затрат сырья на единицу продукции, т.е. матрицу

Матрица - виды, операции и действия с примерами решения а затем общую стоимость сырья

Матрица - виды, операции и действия с примерами решения Матрица - виды, операции и действия с примерами решения

На данном примере мы убедились в выполнении свойства 7 (см. с. 13) — ассоциативного закона произведения матриц: Матрица - виды, операции и действия с примерами решения

Определители квадратных матриц

Необходимость введения определителя — числа, характеризующего квадратную матрицу Матрица - виды, операции и действия с примерами решения, — тесно связана с решением систем линейных уравнений (см. гл. 2). Определитель матрицы Матрица - виды, операции и действия с примерами решенияобозначается Матрица - виды, операции и действия с примерами решения или Матрица - виды, операции и действия с примерами решения

Определителем матрицы первого порядка Матрица - виды, операции и действия с примерами решения, или определителем первого порядка, называется элемент Матрица - виды, операции и действия с примерами решения :

Матрица - виды, операции и действия с примерами решения Например, пусть Матрица - виды, операции и действия с примерами решения тогда Матрица - виды, операции и действия с примерами решения

Определителем матрицы второго порядка Матрица - виды, операции и действия с примерами решения, или определителем второго порядка, называется число, которое вычисляется по формуле:

Матрица - виды, операции и действия с примерами решения

Произведения аМатрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решенияназываются членами определителя второго порядка. Например, пусть Матрица - виды, операции и действия с примерами решения тогда

Матрица - виды, операции и действия с примерами решения

Пусть дана квадратная матрица третьего порядка: Матрица - виды, операции и действия с примерами решения Определителем матрицы третьего порядка Матрица - виды, операции и действия с примерами решения, или определителем третьего порядка, называется число, которое вычисляется по формуле:

Матрица - виды, операции и действия с примерами решения

Это число представляет алгебраическую сумму, состоящую из 6 слагаемых, или 6 членов определителя. В каждое слагаемое входит ровно по одному элементу из каждой строки и каждого столбца матрицы. Знаки, с которыми члены определителя входят в формулу (1.4), легко запомнить, пользуясь схемой (рис. 1.1), которая называется правилом треугольников или правилом Сарруса.

Матрица - виды, операции и действия с примерами решения

Пример №6

Вычислить определитель третьего порядка

Матрица - виды, операции и действия с примерами решения

Решение:

Матрица - виды, операции и действия с примерами решения Матрица - виды, операции и действия с примерами решения

Для того чтобы ввести понятие определителя более высокого порядка, потребуются некоторые дополнительные понятия. Рассмотрим квадратную матрицу Матрица - виды, операции и действия с примерами решения-гo порядка: Матрица - виды, операции и действия с примерами решения

Из общего числа Матрица - виды, операции и действия с примерами решения элементов этой матрицы выберем набор, содержащий Матрица - виды, операции и действия с примерами решения элементов, таким образом, чтобы в него входило по одному элементу из каждой строки и каждого столбца. Например, набор элементов Матрица - виды, операции и действия с примерами решенияили Матрица - виды, операции и действия с примерами решения соответственно главной и побочной диагоналей матрицы.

Любой такой набор можно упорядочить, записав сначала элемент из 1-й строки, затем из 2-й и т.д., т.е.

Матрица - виды, операции и действия с примерами решения

Номера столбцов Матрица - виды, операции и действия с примерами решения образуют при этом перестановку Матрица - виды, операции и действия с примерами решенияиз Матрица - виды, операции и действия с примерами решения чисел: Матрица - виды, операции и действия с примерами решения Всего существует Матрица - виды, операции и действия с примерами решения различных перестановок из Матрица - виды, операции и действия с примерами решения натуральных чисел.

Введем понятие беспорядка, или инверсии, в перестановке Матрица - виды, операции и действия с примерами решения Это наличие пары чисел, в которой большее число предшествует меньшему. Например, в перестановке из трех чисел Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения имеется одна инверсия (2; 1), а в перестановке Матрица - виды, операции и действия с примерами решения — три: (3; 2), (3; 1), (2; 1). Обозначим через Матрица - виды, операции и действия с примерами решения количество инверсий в перестановке Матрица - виды, операции и действия с примерами решения

Возвращаясь к наборам (1.5) из элементов матрицы Матрица - виды, операции и действия с примерами решения мы можем каждому такому набору поставить в соответствие произведение его элементов:

Матрица - виды, операции и действия с примерами решения

и число Матрица - виды, операции и действия с примерами решения, равное количеству инверсий в перестановке Матрица - виды, операции и действия с примерами решения Матрица - виды, операции и действия с примерами решения из номеров соответствующих столбцов.

Определение. Определителем квадратной матрицы Матрица - виды, операции и действия с примерами решения-го порядка, или определителем Матрица - виды, операции и действия с примерами решения-го порядка, называется число, равное алгебраической сумме Матрица - виды, операции и действия с примерами решения членов, каждый из которых является произведением Матрица - виды, операции и действия с примерами решения элементов матрицы, взятых по одному из каждой строки и каждого столбца, причем знак каждого члена определяется как Матрица - виды, операции и действия с примерами решения, где Матрица - виды, операции и действия с примерами решения — число инверсий в перестановке Матрица - виды, операции и действия с примерами решения из номеров столбцов элементов матрицы, ест при этом номера строк записаны в порядке возрастания:

Матрица - виды, операции и действия с примерами решения где сумма берется по всем перестановкам Матрица - виды, операции и действия с примерами решения Проверим, например, что при Матрица - виды, операции и действия с примерами решения мы получаем введенный ранее определитель третьего порядка (1.4):

Матрица - виды, операции и действия с примерами решения

то же число, что и по формуле (1.4).

Заметим, что с ростом Матрица - виды, операции и действия с примерами решения резко увеличивается число членов определителя Матрица - виды, операции и действия с примерами решения поэтому даже для Матрица - виды, операции и действия с примерами решения использование формулы (1.7) весьма трудоемко (получим 24 слагаемых!).

На практике при вычислении определителей высоких порядков используют другие формулы. Для их рассмотрения необходимо ввести новые понятия.

Пусть дана квадратная матрица Матрица - виды, операции и действия с примерами решения Матрица - виды, операции и действия с примерами решения-го порядка.

Минором Матрица - виды, операции и действия с примерами решения элемента Матрица - виды, операции и действия с примерами решения матрицы Матрица - виды, операции и действия с примерами решения-го порядка называется

определитель матрицы Матрица - виды, операции и действия с примерами решения-го порядка, полученной из матрицы Матрица - виды, операции и действия с примерами решениявычеркиванием Матрица - виды, операции и действия с примерами решения-й строки и Матрица - виды, операции и действия с примерами решенияго столбца.

Например, минором элемента Матрица - виды, операции и действия с примерами решения матрицы Матрица - виды, операции и действия с примерами решения третьего порядка будет: Матрица - виды, операции и действия с примерами решения Каждая матрица Матрица - виды, операции и действия с примерами решения-го порядка имеет Матрица - виды, операции и действия с примерами решения миноров Матрица - виды, операции и действия с примерами решения-го порядка.

Алгебраическим дополнением Матрица - виды, операции и действия с примерами решения элемента Матрица - виды, операции и действия с примерами решения матрицы Матрица - виды, операции и действия с примерами решения-го порядка называется его минор, взятый со знаком Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решения

т.е. алгебраическое дополнение совпадает с минором, когда сумма номеров строки и столбцаМатрица - виды, операции и действия с примерами решения — четное число, и отличается от минора знаком, когда Матрица - виды, операции и действия с примерами решения— нечетное число.

Например, Матрица - виды, операции и действия с примерами решения

Пример №7

Найти алгебраические дополнения всех элементов матрицы (из примера 1.6):

Матрица - виды, операции и действия с примерами решения

Решение:

Матрица - виды, операции и действия с примерами решения Важное значение для вычисления определителей имеет следующая теорема.

Теорема Лапласа. Определитель квадратной матрицы равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения:

Матрица - виды, операции и действия с примерами решения

(разложение по элементам Матрица - виды, операции и действия с примерами решения-й строки; Матрица - виды, операции и действия с примерами решения);

Матрица - виды, операции и действия с примерами решения

(разложение по элементам Матрица - виды, операции и действия с примерами решения-го столбца; Матрица - виды, операции и действия с примерами решения).

Матрица - виды, операции и действия с примерами решенияУбедимся в справедливости теоремы Лапласа на примере определителя матрицы третьего порядка. Разложим его вначале по элементам первой строки:Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решения Точнее данная теорема является частным случаем теоремы Лапласа.

После преобразований (представляем их сделать читателю) нетрудно убедиться в том, что полученное выражение совпадает с определением (1.4). Аналогичный результат получаем разложением определителя матрицы по любой строке или столбцу.

Пример №8

Вычислить определитель треугольной матрицыМатрица - виды, операции и действия с примерами решения:

Матрица - виды, операции и действия с примерами решения

Решение:

Раскладывая по первому столбцу, получаем:

Матрица - виды, операции и действия с примерами решения

На частном примере мы убедились в том, что определитель треугольной (и, очевидно, диагональной) матрицы равен произведению элементов главной диагонали.

Значение теоремы Лапласа состоит в том, что позволяет свести вычисление определителей Матрица - виды, операции и действия с примерами решения-го порядка к вычислению более простых определителей Матрица - виды, операции и действия с примерами решения-го порядка.

Свойства определителей

1. Если какая-либо строка (столбец) матрицы состоит из одних нулей, то ее определитель равен 0.

2. Если все элементы какой-либо строки (столбца) матрицы умножить на число Матрица - виды, операции и действия с примерами решения, то ее определитель умножится на это число Матрица - виды, операции и действия с примерами решения.

Пусть определитель исходной матрицы равен Матрица - виды, операции и действия с примерами решения. Для определенности первую строку матрицы умножим на Матрица - виды, операции и действия с примерами решения, получим новый определитель Матрица - виды, операции и действия с примерами решения, который разложим по элементам первой строки:

Матрица - виды, операции и действия с примерами решения

Замечание. За знак определителя можно выносить общий множитель элементов любой строки или столбца в отличие от матрицы, за знак которой можно выносить общий множитель лишь всех ее элементов. Например, Матрица - виды, операции и действия с примерами решения Матрица - виды, операции и действия с примерами решения, но Матрица - виды, операции и действия с примерами решения

3. При транспонировании матрицы ее определитель не изменяется: Матрица - виды, операции и действия с примерами решения

4. При перестановке двух строк (столбцов) матрицы ее определитель меняет знак на противоположный.

□ Предположим вначале, что переставлены две соседние строки матрицы:Матрица - виды, операции и действия с примерами решения Разложим определитель исходной матрицы Матрица - виды, операции и действия с примерами решения по элементам Матрица - виды, операции и действия с примерами решения-й строки, а определитель новой матрицы (с переставленными строками) Матрица - виды, операции и действия с примерами решения — по элементам Матрица - виды, операции и действия с примерами решения-й строки. Разложения будут отличаться только знаком, так как в формуле (1.9) для Матрица - виды, операции и действия с примерами решения каждое алгебраическое дополнение будет иметь противоположный знак (множители Матрица - виды, операции и действия с примерами решения сменятся на множители Матрица - виды, операции и действия с примерами решения , поэтому Матрица - виды, операции и действия с примерами решения

Если переставить не соседние строки, а, скажем, Матрица - виды, операции и действия с примерами решения-ю и Матрица - виды, операции и действия с примерами решения-ю, то такую перестановку можно представить как последовательное смещение Матрица - виды, операции и действия с примерами решения-й строки на Матрица - виды, операции и действия с примерами решения строк вниз (при этом каждый раз знак определителя меняется), Матрица - виды, операции и действия с примерами решения-й строки на Матрица - виды, операции и действия с примерами решения вверх, что тоже сопровождается Матрица - виды, операции и действия с примерами решенияизменением знака, т.е. знак поменяется нечетное число Матрица - виды, операции и действия с примерами решения раз: Матрица - виды, операции и действия с примерами решения.

Доказательство для столбцов аналогично.Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решенияКвадратная матрица называется треугольной, если все ее элементы, расположенные ниже (или выше) главной диагонали, равны нулю.

5. Если квадратная матрица содержит две одинаковые строки {столбца), то ее определитель равен 0.

□Действительно, переставим эти строки (столбцы). С одной стороны, определитель не изменится, но, с другой стороны, по свойству 4 поменяет знак, т.е.Матрица - виды, операции и действия с примерами решения , откуда Матрица - виды, операции и действия с примерами решения

6. Если элементы двух строк (столбцов) матрицы пропорциональны, то ее определитель равен 0.

□ Пусть для определенности пропорциональны первая и вторая строки. Тогда, вынося коэффициент пропорциональности Матрица - виды, операции и действия с примерами решения, получаем по свойству Матрица - виды, операции и действия с примерами решения, где Матрица - виды, операции и действия с примерами решенияимеет две одинаковые строки и по свойству 5 равен 0.

7. Сумма произведений элементов какой-либо строки (столбца) матрицы на алгебраические дополнения элементов другой строки (столбца) этой матрицы равна 0, т.е.

Матрица - виды, операции и действия с примерами решения

Рассмотрим квадратную матрицу Матрица - виды, операции и действия с примерами решения и вспомогательную матрицу Матрица - виды, операции и действия с примерами решения, полученную из матрицы Матрица - виды, операции и действия с примерами решения заменой Матрица - виды, операции и действия с примерами решения-й строки на Матрица - виды, операции и действия с примерами решения-ю:

Матрица - виды, операции и действия с примерами решения

т.е. матрица Матрица - виды, операции и действия с примерами решения имеет две одинаковые строки, поэтому согласно свойству 5 ее определитель равен 0. Вычисляя его разложением по элементам Матрица - виды, операции и действия с примерами решения-й строки, получаем:

Матрица - виды, операции и действия с примерами решения

Замечание. Объединяя результат теоремы Лапласа и свойство 7, получаем:

Матрица - виды, операции и действия с примерами решения 8. Определитель матрицы не изменится, если к элементам какой-либо строки (столбца) матрицы прибавить элементы другой строки (столбца), предварительно умноженные на одно и то же число.

Пусть для определенности к элементам Матрица - виды, операции и действия с примерами решения-Й строки матрицы прибавим элементы Матрица - виды, операции и действия с примерами решения-й строки, умноженные на Матрица - виды, операции и действия с примерами решения Тогда первая строка матрицы имеет вид: Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решенияОпределитель полученной матрицы вычислим разложением по элементам Матрица - виды, операции и действия с примерами решения-й строки:

Матрица - виды, операции и действия с примерами решения

где Матрица - виды, операции и действия с примерами решенияалгебраические дополнения элементов Матрица - виды, операции и действия с примерами решения-й строки исходной матрицы Матрица - виды, операции и действия с примерами решения Раскроем скобки и получим после преобразования:

Матрица - виды, операции и действия с примерами решения

Используя формулу (1.12), получаем, что первая сумма равна определителю исходной матрицы, а вторая — 0, т.е.Матрица - виды, операции и действия с примерами решения

9. Сумма произведений произвольных чисел Матрица - виды, операции и действия с примерами решения на алгебраические дополнения элементов любой строки (столбца) равна определителю матрицы, полученной из данной заменой элементов этой строки (столбца) на числа Матрица - виды, операции и действия с примерами решения.

Свойство вытекает непосредственно из теоремы Лапласа.

10. Определитель произведения двух квадратных матриц равен произведению их определителей: Матрица - виды, операции и действия с примерами решения где Матрица - виды, операции и действия с примерами решения —матрицы Матрица - виды, операции и действия с примерами решения-го порядка.

Замечание. Из свойства 10 следует, что даже если Матрица - виды, операции и действия с примерами решения то Матрица - виды, операции и действия с примерами решения

Перечисленные свойства определителей позволяют существенно упростить их вычисление, особенно для определителей высоких порядков. При вычислении определителей целесообразно так преобразовать исходную матрицу с помощью свойств 1—9, чтобы преобразованная матрица имела строку (или столбец), содержащую как можно больше нулей, а потом найти определитель разложением по этой строке (столбцу).

Пример №9

Вычислить определитель четвертого порядка:

Матрица - виды, операции и действия с примерами решения

Решение:

Преобразуем матрицу так, чтобы в 3-й строке все элементы, кроме одного, обращались в 0. Для этого умножим, например, элементы 3-го столбца на (-4) и на 2 и прибавим их соответственно к элементам 1-го и 2-го столбцов. Раскладывая полученный определитель по элементам третьей строки, найдем Матрица - виды, операции и действия с примерами решения Полученный определитель третьего порядка можно вычислить по правилу треугольников или с помощью теоремы Лапласа, однако можно продолжить упрощение матрицы. «Обнулим» в матрице третьего порядка элементы 2-й строки (кроме одного). Для этого элементы 3-го столбца матрицы, предварительно умножив на (—13) и на 4, сложим с элементами 1-го и 2-го столбцов соответственно:Матрица - виды, операции и действия с примерами решения

Раскладывая по элементам множители, получаем: Матрица - виды, операции и действия с примерами решения

Обратная матрица

Для каждого числаМатрица - виды, операции и действия с примерами решения существует обратное число Матрица - виды, операции и действия с примерами решения такое, что произведение Матрица - виды, операции и действия с примерами решения Для квадратных матриц тоже вводится аналогичное понятие.

Определение. Матрица Матрица - виды, операции и действия с примерами решения называется обратной по отношению к квадратной матрице Матрица - виды, операции и действия с примерами решения, если при умножении этой матрицы на данную как справа, так и слева получается единичная матрица:

Матрица - виды, операции и действия с примерами решения

Из определения следует, что только квадратная матрица имеет обратную; в этом случае и обратная матрица является квадратной того же порядка.

Однако не каждая квадратная матрица имеет обратную. Если Матрица - виды, операции и действия с примерами решения является необходимым и достаточным условием существования числа Матрица - виды, операции и действия с примерами решения то для существования матрицы Матрица - виды, операции и действия с примерами решениятаким условием является требование Матрица - виды, операции и действия с примерами решения

Если определитель матрицы отличен от нуля Матрица - виды, операции и действия с примерами решения то такая квадратная матрица называется невырожденной, или неособенной; в противном случае (при Матрица - виды, операции и действия с примерами решения)— вырожденной, или особенной.

Теорема (необходимое и достаточное условие существования обратной матрицы). Обратная матрица Матрица - виды, операции и действия с примерами решения существует (и единственна) тогда и только тогда, когда исходная матрица невырожденная.

Необходимость. Пусть матрица Матрица - виды, операции и действия с примерами решения имеет обратную Матрица - виды, операции и действия с примерами решения, т.е Матрица - виды, операции и действия с примерами решения. По свойству 10 определителей имеем

Матрица - виды, операции и действия с примерами решения

Достаточность. Пусть Матрица - виды, операции и действия с примерами решения Рассмотрим квадратную матрицу Матрица - виды, операции и действия с примерами решения-го порядка, Матрица - виды, операции и действия с примерами решенияназываемую присоединенной*, элементы которой являются алгебраическими дополнениями элементов матрицы Матрица - виды, операции и действия с примерами решения, транспонированной к Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решенияТогда элементы произведения матриц Матрица - виды, операции и действия с примерами решения определяются по правилу умножения матриц: Матрица - виды, операции и действия с примерами решения Поэтому матрица Матрица - виды, операции и действия с примерами решения является диагональной, элементы ее главной диагонали равны определителю исходной матрицы:

Матрица - виды, операции и действия с примерами решения

Аналогично доказывается, что произведение Матрица - виды, операции и действия с примерами решения на Матрица - виды, операции и действия с примерами решения равно той же матрице Матрица - виды, операции и действия с примерами решения Отсюда следует, что если в качестве обратной матрицы взять матрицу.

Матрица - виды, операции и действия с примерами решения

то произведения Матрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решения равны единичной матрице Матрица - виды, операции и действия с примерами решения Матрица - виды, операции и действия с примерами решения-го порядка: Матрица - виды, операции и действия с примерами решения

Докажем единственность обратной матрицы. Предположим, что существуют еще матрицы Матрица - виды, операции и действия с примерами решения такие, что Матрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решения, где матрица Матрица - виды, операции и действия с примерами решения получена по формуле (1.14), и выполняются равенства: Матрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решения. Тогда, умножая наМатрица - виды, операции и действия с примерами решенияслева первое из них, получаем: Матрица - виды, операции и действия с примерами решения, откуда Матрица - виды, операции и действия с примерами решения , т.е. Матрица - виды, операции и действия с примерами решения. Аналогично, умножая второе равенство на Матрица - виды, операции и действия с примерами решения справа, получаем Матрица - виды, операции и действия с примерами решения . Единственность доказана. Матрица - виды, операции и действия с примерами решения

Алгоритм вычисления обратной матрицы:

Пример №10

Найти матрицу, обратную к данной:

Матрица - виды, операции и действия с примерами решения

Решение:

1°. Определитель матрицыМатрица - виды, операции и действия с примерами решения (см. пример 1.6), т.е. матрица Матрица - виды, операции и действия с примерами решения — невырожденная и обратная матрица Матрица - виды, операции и действия с примерами решения существует.

2°. Находим матрицу Матрица - виды, операции и действия с примерами решения, транспонированную к Матрица - виды, операции и действия с примерами решения :

Матрица - виды, операции и действия с примерами решения

3°. Находим алгебраические дополнения элементов матрицы Матрица - виды, операции и действия с примерами решения и составляем из них присоединенную матрицу Матрица - виды, операции и действия с примерами решения, учитывая, что Матрица - виды, операции и действия с примерами решения

4° . Вычисляем обратную матрицу Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решения 5°. Проверяем правильность вычисления обратной матрицы по формулам:

Матрица - виды, операции и действия с примерами решения (рекомендуем в этом убедиться самому читателю). ►

Для невырожденных матриц выполняются следующие свойства:

Матрица - виды, операции и действия с примерами решения

Ранг матрицы

Для решения и исследования ряда математических и прикладных задач важное значение имеет понятие ранга матрицы.

В матрице Матрица - виды, операции и действия с примерами решения размера Матрица - виды, операции и действия с примерами решения вычеркиванием каких-либо строк и столбцов можно вычленить квадратные подматрицы Матрица - виды, операции и действия с примерами решения-то порядка, где Матрица - виды, операции и действия с примерами решения. Определители таких подматриц называются минорами Матрица - виды, операции и действия с примерами решения-го порядка матрицы Матрица - виды, операции и действия с примерами решения.

Например, из матрицы Матрица - виды, операции и действия с примерами решения можно получить подматрицы первого, второго и третьего порядков.

Определение. Рангом матрицы Матрица - виды, операции и действия с примерами решения называется наивысший порядок отличных от нуля миноров этой матрицы.

Ранг матрицы Матрица - виды, операции и действия с примерами решения обозначается Матрица - виды, операции и действия с примерами решения или Матрица - виды, операции и действия с примерами решения

Из определения следует: а) ранг матрицы Матрица - виды, операции и действия с примерами решения не превосходит меньшего из ее размеров, т.е. Матрица - виды, операции и действия с примерами решения;

б) Матрица - виды, операции и действия с примерами решения тогда и только тогда, когда все элементы матрицы равны нулю, т.е. Матрица - виды, операции и действия с примерами решения;

в) для квадратной матрицы Матрица - виды, операции и действия с примерами решения-го порядка Матрица - виды, операции и действия с примерами решения тогда и только тогда, когда матрица Матрица - виды, операции и действия с примерами решения— невырожденная.

Пример №11

Вычислить ранг матрицы

Матрица - виды, операции и действия с примерами решения

Решение:

Матрица Матрица - виды, операции и действия с примерами решения имеет четвертый порядок, поэтому Матрица - виды, операции и действия с примерами решения Однако Матрица - виды, операции и действия с примерами решениятак как матрица Матрица - виды, операции и действия с примерами решения содержит нулевой столбец, поэтому Матрица - виды, операции и действия с примерами решения Все подматрицы третьего порядка тоже содержат нулевой столбец и поэтому имеют нулевые определители, значит Матрица - виды, операции и действия с примерами решения Все подматрицы второго порядка либо имеют нулевой столбец (второй или четвертый), либо имеют пропорциональные столбцы (первый и третий), поэтому тоже имеют нулевые определители; таким образом Матрица - виды, операции и действия с примерами решения Поскольку матрица Матрица - виды, операции и действия с примерами решения содержит ненулевые элементы, т.е. невырожденные подматрицы первого порядка, то Матрица - виды, операции и действия с примерами решения. ►

Пример №12

Вычислить ранг матрицы

Матрица - виды, операции и действия с примерами решения

Решение:

Для матрицы Матрица - виды, операции и действия с примерами решения.

Проверим, равен ли ранг 3-м, для этого вычислим все миноры третьего порядка, т.е. определители всех подматриц третьего порядка (их всего 4, они получаются при вычеркивании одного из столбцов матрицы):Матрица - виды, операции и действия с примерами решения

Поскольку все миноры третьего порядка нулевые,Матрица - виды, операции и действия с примерами решения Так как существует ненулевой минор второго порядка, например,

Матрица - виды, операции и действия с примерами решения

В общем случае определение ранга матрицы перебором всех миноров достаточно трудоемко. Для облегчения этой задачи используются преобразования, сохраняющие ранг матрицы.

Назовем элементарными преобразованиями матрицы следующие:

  1. Отбрасывание нулевой строки (столбца).
  2. Умножение всех элементов строки (столбца) матрицы на число, не равное нулю.
  3. Изменение порядка строк (столбцов) матрицы.
  4. Прибавление к каждому элементу одной строки (столбца) соответствующих элементов другой строки (столбца), умноженных на любое число.
  5. Транспонирование матрицы.

Теорема. Ранг матрицы не изменяется при элементарных преобразованиях матрицы.

Матрица - виды, операции и действия с примерами решенияПри изучении свойств определителей было показано, что при преобразованиях квадратных матриц их определители либо сохраняются, либо умножаются на число, не равное нулю. В результате сохраняется наивысший порядок отличных от нуля миноров исходной матрицы, т.е. ее ранг не изменяется. Матрица - виды, операции и действия с примерами решения

С помощью элементарных преобразований можно привести матрицу к так называемому ступенчатому виду, когда вычисление ее ранга не представляет труда.

Матрица Матрица - виды, операции и действия с примерами решения называется ступенчатой, если она имеет вид: Матрица - виды, операции и действия с примерами решения где Матрица - виды, операции и действия с примерами решения.

Замечание. Условие Матрица - виды, операции и действия с примерами решения всегда может быть достигнуто транспонированием матрицы.

Очевидно, что ранг ступенчатой матрицы равен Матрица - виды, операции и действия с примерами решения, так как имеется минор Матрица - виды, операции и действия с примерами решения-го порядка, не равный нулю:

Матрица - виды, операции и действия с примерами решения

Покажем на примере алгоритм вычисления ранга матрицы с помощью элементарных преобразований.

Пример №13

Найти ранг матрицы

Матрица - виды, операции и действия с примерами решения

Решение:

1°. Если Матрица - виды, операции и действия с примерами решения, то при перестановке строк или столбцов добиваемся того, что Матрица - виды, операции и действия с примерами решения. В данном примере поменяем местами, например, 1-ю и 2-ю строки матрицы (см. ниже).

2°. Если Матрица - виды, операции и действия с примерами решения, то умножая элементы 2-й, 3-й и 4-й строк на подходящие числа (именно на Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения) и прибавляя полученные числа соответственно к элементам 2-й1, 3-й и 4-й строк, добьемся того, чтобы все элементы 1-го столбца (кромеМатрица - виды, операции и действия с примерами решения ) равнялись нулю:

Матрица - виды, операции и действия с примерами решения 3°. Если в полученной матрице Матрица - виды, операции и действия с примерами решения(у нас Матрица - виды, операции и действия с примерами решения), то умножая элементы 3-й и 4-й строк на подходящие числа (а именно, на Матрица - виды, операции и действия с примерами решения), добьемся того, чтобы все элементы 2-го столбца (кроме Матрица - виды, операции и действия с примерами решения) равнялись нулю. Если в процессе преобразований получаются строки (или столбцы), целиком состоящие из нулей (как в данном примере), то отбрасываем эти строки (или столбцы):

Матрица - виды, операции и действия с примерами решения

Последняя матрица имеет ступенчатый вид и содержит миноры второго порядка, не равные нулю, например,

Матрица - виды, операции и действия с примерами решения Поэтому ранг полученной ступенчатой, а следовательно, и данной матрицы равен 2. ►

Для рангов матриц справедливы следующие соотношения:

Матрица - виды, операции и действия с примерами решения

5)Матрица - виды, операции и действия с примерами решения если Матрица - виды, операции и действия с примерами решения— квадратная матрица и Матрица - виды, операции и действия с примерами решения

6) Матрица - виды, операции и действия с примерами решения где Матрица - виды, операции и действия с примерами решения— число столбцов матрицы Матрица - виды, операции и действия с примерами решения или строк матрицы Матрица - виды, операции и действия с примерами решения.

Понятие ранга матрицы тесно связано с понятием линейной зависимости (независимости) ее строк или столбцов.

Матрица - виды, операции и действия с примерами решения матрице Матрица - виды, операции и действия с примерами решения обозначим ее строки следующим образом:

Матрица - виды, операции и действия с примерами решения

Две строки матрицы называются равными, если равны их соответствующие элементы: Матрица - виды, операции и действия с примерами решения, если Матрица - виды, операции и действия с примерами решения

Арифметические операции над строками матрицы (умножение строки на число, сложение строк) вводятся как операции, проводимые поэлементно:

Матрица - виды, операции и действия с примерами решения

Строка е называется линейной комбинацией строк Матрица - виды, операции и действия с примерами решения матрицы, если она равна сумме произведений этих строк на произвольные действительные числа: Матрица - виды, операции и действия с примерами решения

где Матрица - виды, операции и действия с примерами решения — любые числа.

Строки матрицы Матрица - виды, операции и действия с примерами решенияназываются линейно зависимыми, если существуют такие числа Матрица - виды, операции и действия с примерами решения.т, не равные одновременно нулю, что линейная комбинация строк матрицы равна нулевой строке:

Матрица - виды, операции и действия с примерами решения

где 0 = (0 0…0).

Линейная зависимость строк матрицы означает, что хотя бы одна строка матрицы является линейной комбинацией остальных.

Матрица - виды, операции и действия с примерами решенияДействительно, пусть для определенности в формуле (1.17) Матрица - виды, операции и действия с примерами решения , тогда Матрица - виды, операции и действия с примерами решения

где Матрица - виды, операции и действия с примерами решения

Таким образом, строкаМатрица - виды, операции и действия с примерами решенияявляется линейной комбинацией остальных строк. Матрица - виды, операции и действия с примерами решения

Если линейная комбинация строк (1.17) равна нулю тогда и только тогда, когда все коэффициенты Матрица - виды, операции и действия с примерами решения равны нулю, т.е. Матрица - виды, операции и действия с примерами решения, то строки Матрица - виды, операции и действия с примерами решенияназываются линейно независимыми.

Теорема о ранге матрицы. Ранг матрицы равен максимальному числу ее линейно независимых строк или столбцов, через которые линейно выражаются все остальные ее строки {столбцы).

Матрица - виды, операции и действия с примерами решения Пусть матрица Матрица - виды, операции и действия с примерами решения размера Матрица - виды, операции и действия с примерами решения имеет Матрица - виды, операции и действия с примерами решения

Это означает, что существует отличный от нуля минор Матрица - виды, операции и действия с примерами решения-го порядка. Всякий ненулевой минор Матрица - виды, операции и действия с примерами решения-го порядка будем называть базисным минором. Пусть для определенности это минор

Матрица - виды, операции и действия с примерами решения

Тогда строки матрицы Матрица - виды, операции и действия с примерами решения линейно независимы. Действительно, предположим противное, т.е. одна из этих строк, например Матрица - виды, операции и действия с примерами решения, является линейной комбинацией остальных:

Матрица - виды, операции и действия с примерами решения

Вычтем из элементов Матрица - виды, операции и действия с примерами решения-й строки элементы 1-й строки, умноженные на Матрица - виды, операции и действия с примерами решения, элементы 2-й строки, умноженные на Матрица - виды, операции и действия с примерами решения , и т.д., наконец, элементы Матрица - виды, операции и действия с примерами решения-й строки, умноженные на Матрица - виды, операции и действия с примерами решения. На основании свойства 8 (см. § 1.4) при таких преобразованиях матрицы ее определитель Матрица - виды, операции и действия с примерами решения не изменится, но так как теперь г-я строка будет состоять из одних нулей, то Матрица - виды, операции и действия с примерами решения — противоречие, и наше предположение о том, что строки Матрица - виды, операции и действия с примерами решения матрицы линейно зависимы, неверно.

Строки Матрица - виды, операции и действия с примерами решения назовем базисными.

Покажем, что любые Матрица - виды, операции и действия с примерами решения строк матрицы линейно зависимы, т.е. любая строка выражается через базисные.

Рассмотрим минор Матрица - виды, операции и действия с примерами решения-го порядка, который получается

при дополнении рассматриваемого минора элементами еще одной строки Матрица - виды, операции и действия с примерами решения и столбца Матрица - виды, операции и действия с примерами решения Матрица - виды, операции и действия с примерами решения

Этот минор равен нулю, так как ранг матрицы равен Матрица - виды, операции и действия с примерами решения, поэтому любой минор более высокого порядка равен нулю.

Раскладывая его по элементам последнего (добавленного) столбца, получаем Матрица - виды, операции и действия с примерами решения, где последнее алгебраическое дополнение Матрица - виды, операции и действия с примерами решения совпадает с базисным минором Матрица - виды, операции и действия с примерами решения и поэтому отлично от нуля, т.е. Матрица - виды, операции и действия с примерами решения .

Разделив последнее равенство на Матрица - виды, операции и действия с примерами решения, можем выразить элемент Матрица - виды, операции и действия с примерами решения как линейную комбинацию:

Матрица - виды, операции и действия с примерами решения

где Матрица - виды, операции и действия с примерами решения

Фиксируем значение Матрица - виды, операции и действия с примерами решения и получаем, что для любого Матрица - виды, операции и действия с примерами решения Матрица - виды, операции и действия с примерами решенияэлементы Матрица - виды, операции и действия с примерами решения-й строки Матрица - виды, операции и действия с примерами решения линейно выражаются через элементы строк Матрица - виды, операции и действия с примерами решения т.е. Матрица - виды, операции и действия с примерами решения-я строка есть линейная комбинация базисных:

Матрица - виды, операции и действия с примерами решения

Теорема о ранге матрицы играет принципиальную роль в матричном анализе, в частности при исследовании систем линейных уравнений.

Матрицы в линейной алгебре

Прямоугольная таблица:

Матрица - виды, операции и действия с примерами решения (9.1)

состоящая из m строк и n столбцов, называется матрицей размера m х n или (n,m)-матрицей.

Матрицу (9.1) будем обозначать А или Матрица - виды, операции и действия с примерами решения. ЧислаМатрица - виды, операции и действия с примерами решения называются элементами матрицы, индекс i обозначает номер строки, а индекс j — номер столбца, на пересечении которых расположен элемент.

Если m = n, то матрица (9.1) называется квадратной матрицей порядка n.

В квадратной матрице n-го порядка диагональ, состоящая из элементов Матрица - виды, операции и действия с примерами решения называется главной диагональю, состоящая из элементов а,п, Матрица - виды, операции и действия с примерами решения — побочной диагональю.

Квадратная матрица:Матрица - виды, операции и действия с примерами решения

называется диагональной. Если в диагональной матрице все диагональные элементы равны, т.е. Матрица - виды, операции и действия с примерами решения, то такая матрица называется скалярной. Скалярная матрица, у которой Матрица - виды, операции и действия с примерами решения называется единичной и обозначается буквой Е. Например, единичная матрица третьего порядка:

Матрица - виды, операции и действия с примерами решения

Матрица, все элементы которой равны нулю, называется нулевой матрицей и обозначается через 0.

Матрицы А и В называются равными, если их размеры одинаковы и элементы этих матриц, стоящие на одинаковых местах, равны.

Операции над матрицами

Суммой двух матриц Матрица - виды, операции и действия с примерами решенияодинакового размера называется матрица Матрица - виды, операции и действия с примерами решения того же размера с элементами, равными суммам соответствующих элементов слагаемых матриц, т.е. Матрица - виды, операции и действия с примерами решения

Сложение матриц обладает следующими свойствами:

  1. Коммутативность, т.е. А + В = В + А.
  2. Ассоциативность, т.е. (А + B)+ С = А + (В + С).
  3. Для любых двух матриц А и В одинакового размера существует единственная матрица X такая, что А + X = В. Матрица X обозначается X = В-А и называется разностью матриц В и А. Урав-=нение А + Х = 0 имеет решение Х = 0-А, получающаяся при этом матрица называется противоположной А и обозначается — А.

Произведением матрицы Матрица - виды, операции и действия с примерами решенияна число Матрица - виды, операции и действия с примерами решения называется матрица, все элементы которой равны соответствующим элементам матрицы А, умноженным на число Матрица - виды, операции и действия с примерами решения.

Умножение матрицы на действительное число обладает следующими свойствами:

Матрица - виды, операции и действия с примерами решения

Матрица А называется согласованной с матрицей В, если число столбцов матрицы А равно числу строк матрицы В. В этом случае произведением матрицы Матрица - виды, операции и действия с примерами решения на матрицу Матрица - виды, операции и действия с примерами решенияназывается матрица

Матрица - виды, операции и действия с примерами решения

т.е. элемент, стоящий в n -той строке и j-том столбце матрицы произведения равен сумме произведений элементов n’-той строки матрицы А на соответствующие элементы j -го столбца матрицы В.

Свойства умножения:

  1. Если матрица А согласована с матрицей В, а матрица В согласована с матрицей С, то А • В• С = (А Матрица - виды, операции и действия с примерами решения В)- С = А Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения С) — ассоциативность умножения;
  2. (А + ВС = АС + ВС, А-(В + С)= АВ + АС — свойство дистрибутивности;
  3. Умножение матриц не коммутативно, т.е., как правило,Матрица - виды, операции и действия с примерами решения

Транспонированием матрицы А называется операция замены местами строк и столбцов с сохранением порядка их следования, т.е. i-я строка матрицы А становится i -тым столбцом транспонированной матрицы. Матрица, транспонированная к матрице А обозначается Матрица - виды, операции и действия с примерами решения.

Матрица - виды, операции и действия с примерами решения

Свойства транспонирования: Матрица - виды, операции и действия с примерами решения

Определитель матрицы

Далее будем рассматривать только квадратные матрицы. Каждой квадратной матрице ставится в соответствие действительное число, называемое определителем матрицы и вычисляемое по определенному правилу.

Определитель матрицы естественно возникает при решении систем линейных уравнений, или в свернутой форме Матрица - виды, операции и действия с примерами решения , или в свернутой форме Матрица - виды, операции и действия с примерами решения

Предыдущая формула получается разложением определителя по первой строке.

Возьмем теперь квадратную матрицу n -го порядка

Матрица - виды, операции и действия с примерами решения

Для записи определителя n-го порядка матрицы А будем применять обозначения Матрица - виды, операции и действия с примерами решения. При n = 1 матрица A состоит из одного элемента и ее определитель равен этому элементу. При n = 2 получаем определитель Матрица - виды, операции и действия с примерами решения

Минором Матрица - виды, операции и действия с примерами решения элемента Матрица - виды, операции и действия с примерами решения матрицы A называют определитель матрицы (n-1)-го порядка, получаемого из матрицы Л вычеркиванием i-той строки и j-го столбца.

Пример №14

Найти минор Матрица - виды, операции и действия с примерами решения матрицы:

Матрица - виды, операции и действия с примерами решения

По определению, минор Матрица - виды, операции и действия с примерами решения элемента Матрица - виды, операции и действия с примерами решенияесть определитель матрицы, получаемой из матрицы А вычеркиванием первой строки и второго столбца. Следовательно, Матрица - виды, операции и действия с примерами решения

Алгебраическим дополнением элемента Матрица - виды, операции и действия с примерами решенияматрицы А называется минор Матрица - виды, операции и действия с примерами решения взятый со знаком Матрица - виды, операции и действия с примерами решения Алгебраическое дополнение элемента Матрица - виды, операции и действия с примерами решения обозначается Матрица - виды, операции и действия с примерами решения следовательно, Матрица - виды, операции и действия с примерами решения

Пример №15

Найти алгебраическое дополнение элемента Матрица - виды, операции и действия с примерами решения, матрицы А из примера 7.

Матрица - виды, операции и действия с примерами решения

Определителем квадратной матрицы А n-го порядка Матрица - виды, операции и действия с примерами решения называется число:

Матрица - виды, операции и действия с примерами решения

где аиМатрица - виды, операции и действия с примерами решения — элементы первой строки матрицы (9.2), а Матрица - виды, операции и действия с примерами решения их алгебраические дополнения Матрица - виды, операции и действия с примерами решения.

Запись по формуле (9.3) называется разложением определителя но первой строке.

Рассмотрим свойства определителей.

Свойство 1. При транспонировании матрицы ее определитель не меняется.

Это свойство устанавливает равноправность строк и столбцов определителя, поэтому определение определителя можно сформулировать так:

Определителем квадратной матрицы А n-го порядка Матрица - виды, операции и действия с примерами решения называется число:

Матрица - виды, операции и действия с примерами решения (9.4)

где Матрица - виды, операции и действия с примерами решения — элементы первого столбца матрицы (9.2), а Матрица - виды, операции и действия с примерами решения их алгебраические дополненияМатрица - виды, операции и действия с примерами решения.

Свойство 2. Если поменять местами две строки или два столбца матрицы А, то ее определитель изменит знак на противоположный.

Свойства 1 и 2 позволяют обобщить формулы (9.3) и (9.4) следующим образом:

Определитель квадратной матрицы n-го порядка (будем в дальнейшем говорить определитель n-го порядка) равен сумме попарных произведений любой строки (столбца) на их алгебраические дополнения.

Матрица - виды, операции и действия с примерами решения

Свойство 3. Определитель, y которого две строки или два столбца одинаковы, равен нулю.

Действительно, поменяем в определителе Матрица - виды, операции и действия с примерами решения две одинаковые сроки местами. Тогда, по свойству 2 получим определитель Матрица - виды, операции и действия с примерами решения, но с другой стороны, определитель не изменится, т.е.Матрица - виды, операции и действия с примерами решения. ОтсюдаМатрица - виды, операции и действия с примерами решения.

Свойство 4. Если все элементы какой-нибудь строки (столбца) определителя Матрица - виды, операции и действия с примерами решения умножить на число Матрица - виды, операции и действия с примерами решения, то определитель умножится на Матрица - виды, операции и действия с примерами решения.

Матрица - виды, операции и действия с примерами решения

Умножим элементы i-той строки на Матрица - виды, операции и действия с примерами решения. Тогда получим определитель:

Матрица - виды, операции и действия с примерами решения

Следствие 1. Если все элементы какой-нибудь строки (столбца) имеют общий множитель, то его можно вынести за знак определителя.

Следствие 2. Если все элементы какой-нибудь строки (столбца) равны нулю, то определитель равен нулю.

Свойство 5. Определитель, у которого две строки (два столбца) пронорциональныу равен нулю.

Пусть i-я строка пропорциональна j-ой строке. Вынося коэффициент пропорциональности за знак определителя, получим определитель с двумя одинаковыми строками, который по свойству 3 равен нулю.

Свойство 6. Если каждый элемент строки (столбца) определителя Матрица - виды, операции и действия с примерами решения есть сумма двух слагаемых, то определитель Матрица - виды, операции и действия с примерами решения равен сумме двух определителей: у одного из них i-той строкой (столбцом) служат первые слагаемые, а у другого — вторые.

Разложив определитель Матрица - виды, операции и действия с примерами решения по i -той строке получим:

Матрица - виды, операции и действия с примерами решения

Свойство 7. Определитель не изменится, если к элементам какой-нибудь строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одно и то же число.

Прибавив к элементам i-той строки определителя Матрица - виды, операции и действия с примерами решения соответствующие элементы j-ой строки, умноженные на число Матрица - виды, операции и действия с примерами решения, получим определитель Матрица - виды, операции и действия с примерами решенияОпределитель Матрица - виды, операции и действия с примерами решения равен сумме двух определителей: первый естьМатрица - виды, операции и действия с примерами решения, а второй равен нулю, так как у него i-тая и j-тая строки пропорциональны.

Свойство 8. Определитель диагональной матрицы равен произведению элементов, стоящих на главной диагонали, т.е.:

Матрица - виды, операции и действия с примерами решения

Свойство 9. Сумма произведений элементов какой-нибудь строки (столбца) определителя на алгебраические дополнения элементов другой строки (столбца) равна нулю.

Рассмотрим вспомогательный определитель Матрица - виды, операции и действия с примерами решения, который получается из данного определителя Матрица - виды, операции и действия с примерами решения заменой j-той строки i-той строкой. Определитель Матрица - виды, операции и действия с примерами решения равен нулю, так как у него две одинаковые строки. Разложив его по j-той строке получим:

Матрица - виды, операции и действия с примерами решения

Большое значение имеет следующий критерий равенства определителя нулю. Определитель квадратной матрицы равен нулю тогда и только тогда когда его строки (столбцы) линейно зависимы.

Строки (столбцы) матрицы называются линейно зависимыми, если одна (один) из них является линейной комбинацией с действительными коэффициентами остальных.

Теорема об определителе произведения двух квадратных матриц. Определитель произведения двух квадратных матриц равен произведению определителей этих квадратных матриц, т.е. Матрица - виды, операции и действия с примерами решения.

Ранг матрицы

Рангом матрицы называется наибольший порядок ее миноров, отличных от нуля. Ранг матрицы А обозначают rankA или rА.

Если все миноры порядка к данной матрицы равны нулю, то все миноры более высокого порядка данной матрицы также равны нулю. Это следует из определения определителя. Отсюда вытекает алгоритм нахождения ранга матрицы.

Если все миноры первого порядка (элементы матрицы А) равны нулю, то rankA = 0. Если хотя бы один из миноров первого порядка отличен от нуля, а все миноры второго порядка равны нулю, то rankA = 1. Причем, достаточно просмотреть только те миноры второго порядка, которые окаймляют ненулевой минор первого порядка. Если найдется минор второго порядка отличный от нуля, исследуют миноры третьего порядка, окаймляющие ненулевой минор второго порядка. Так продолжают до тех пор, пока не придут к одному из двух случаев: либо все миноры порядка к, окаймляющие ненулевой минор (A-l)-ro порядка равны нулю, либо таких миноров нет. Тогда rankA = к -1.

Пример №16

Вычислить ранг матрицы Матрица - виды, операции и действия с примерами решения

Минор первого порядка (элемент Матрица - виды, операции и действия с примерами решения) отличен от нуля. Окаймляющий его минор Матрица - виды, операции и действия с примерами решения тоже не равен нулю.

Далее рассмотрим миноры, окаймляющие минор М :

Матрица - виды, операции и действия с примерами решения

Все эти миноры равны нулю, значит rankA = 2. Приведенный алгоритм нахождения ранга матрицы не всегда удобен, поскольку связан с вычислением большого числа определителей. Наиболее удобно пользоваться при вычислении ранга матрицы элементарными преобразованиями, при помощи которых матрица приводится к столь простому виду, что очевидно, чему равен ее ранг.

Элементарными преобразованиями матрицы называют следующие преобразования:

  • > умножение какой-нибудь строки (столбца) матрица на число, отличное от нуля;
  • > прибавление к одной строке (столбцу) другой строки (столбца), умноженной на произвольное число.

Полужордановым преобразованием строк матрицы:

Матрица - виды, операции и действия с примерами решения

с разрешающим элементом Матрица - виды, операции и действия с примерами решения называется следующая совокупность преобразований со строками матрицы:

  • > k первой строке прибавить k-ю, умноженную на число Матрица - виды, операции и действия с примерами решения и т.д.;

> k последней строке прибавить k — го, умноженную на число Матрица - виды, операции и действия с примерами решения После выполнения этих преобразований получается матрица:Матрица - виды, операции и действия с примерами решения

Полужордановым преобразованием столбцов матрицы с разрешающим элементом Матрица - виды, операции и действия с примерами решения называется следующая совокупность преобразований со столбцами матрицы:

После выполнения этих преобразований получается матрица:Матрица - виды, операции и действия с примерами решения

Полужорданово преобразование строк или столбцов квадратной матрицы не изменяет ее определителя. Элементарные преобразования матрицы не изменяют ее ранга. Покажем на пример, как вычислить ранг матрицы, пользуясь элементарными преобразованиями.

Пример №17

Вычислить ранг матрицы Матрица - виды, операции и действия с примерами решения

Применим к матрице А элементарные преобразования: первую строку матрицы, умноженную на (-3) прибавим ко второй и третьей и ее же вычтем из последней.

Матрица - виды, операции и действия с примерами решения

Вычитая далее вторую строку из третьей и последней, имеем:

Матрица - виды, операции и действия с примерами решения

Последняя матрица содержит отличный от нуля минор Матрица - виды, операции и действия с примерами решениятретьего порядка, определитель же самой матрицы А равен нулю. Следовательно, Матрица - виды, операции и действия с примерами решения

Отметим два важных свойства ранга матрицы:

  • Ранг матрицы не меняется при ее транспонировании;
  • Если ранг матрицы равен г, то любые ее г + 1 строк (столбцов) линейно зависимы.

Обратная матрица

Пусть А — квадратная матрица порядка n. Матрица В называется обратной матрицей к матрице А, если выполняются равенства А-В = В■ А = Е, где Е — единичная матрица порядка n.

Теорема 1. Если для данной матрицы существует обратная матрица, то она единственная.

Пусть Матрица - виды, операции и действия с примерами решения — матрицы, обратные к матрице А. Тогда Матрица - виды, операции и действия с примерами решения с другой стороны, Матрица - виды, операции и действия с примерами решения

Откуда Матрица - виды, операции и действия с примерами решения. Обратную матрицу к матрице А обозначают Матрица - виды, операции и действия с примерами решения.

Теорема 2. Матрица А имеет обратную матрицу тогда и только тогда, когда Матрица - виды, операции и действия с примерами решения.

Пусть А имеет обратную матрицу. Тогда Матрица - виды, операции и действия с примерами решения и, применяя теорему об умножении определителей, получаем Матрица - виды, операции и действия с примерами решенияили Матрица - виды, операции и действия с примерами решения

Следовательно, Матрица - виды, операции и действия с примерами решения.

Пусть Матрица - виды, операции и действия с примерами решения. Укажем явное выражение матрицы Матрица - виды, операции и действия с примерами решения через элементы матрицы А, а именно: если Матрица - виды, операции и действия с примерами решения, то:

Матрица - виды, операции и действия с примерами решения

здесь Матрица - виды, операции и действия с примерами решения — алгебраическое дополнение к элементу Матрица - виды, операции и действия с примерами решения. Матрица (9.5) получается из матрицы А следующим образом. Сначала вместо каждого элемента Матрица - виды, операции и действия с примерами решения пишется его алгебраическое дополнение, затем полученная матрица транспонируется и получается т.н. присоединенная матрица. Для получения обратной матрицы присоединенная матрица умножается на величину, обратную Матрица - виды, операции и действия с примерами решения

Непосредственное умножение А на матрицу (9.5) слева и справа дает единичную матрицу, что подтверждает, что (9.5) — матрица, обратная к А.

Пример №18

Найти обратную матрицу к матрице

Матрица - виды, операции и действия с примерами решения

Так как Матрица - виды, операции и действия с примерами решения, то Матрица - виды, операции и действия с примерами решения существует. Вычислим алгебраические дополнения элементов матрицы А: Матрица - виды, операции и действия с примерами решения

Матрицу Матрица - виды, операции и действия с примерами решения находим в два приема, согласно формуле (9.5). Сначала запишем матрицу В, состоящую из алгебраических дополнений элементов Матрица - виды, операции и действия с примерами решения Затем матрица В транспонируется и умножается на число обратное Матрица - виды, операции и действия с примерами решения, в данном случае — на (-1). Окончательно получаем:

Матрица - виды, операции и действия с примерами решения

Матрица называется неособенной или невырожденной, если ее определитель не равен нулю. Отметим свойства обратных матриц. Если А и В — невырожденные матрицы одинакового порядка, то: Матрица - виды, операции и действия с примерами решения

Матрицы и определители

Определение и типы матриц

Определение 3.1.1. Прямоугольная таблица Матрица - виды, операции и действия с примерами решения(3.1.1) состоящая из m строк и n столбцов, называется матрицей размером Матрица - виды, операции и действия с примерами решения.

Числа Матрица - виды, операции и действия с примерами решения называются элементами матрицы. Каждый элемент матрицы имеет два индекса, первый индекс i обозначает номер строки, второй индекс j — номер столбца.

Матрицы удобно обозначать в виде Матрица - виды, операции и действия с примерами решения, при Матрица - виды, операции и действия с примерами решения. Фигурные (круглые) скобки, двойные прямые вертикальные линии показывают, что Матрица - виды, операции и действия с примерами решения— типовой элемент матрицы А, в котором индексы i и j последовательно принимают все значения от 1 до указанных конечных величин.

Превратим в матрице (3.1.1) строки в столбцы, а столбцы в строки, получим матрицу Матрица - виды, операции и действия с примерами решения которая называется транспонированной по отношению к А. Если размер А Матрица - виды, операции и действия с примерами решения, то Матрица - виды, операции и действия с примерами решения размерности Матрица - виды, операции и действия с примерами решения. Повторное транспонирование приводит к исходной матрице: Матрица - виды, операции и действия с примерами решения.

Пример №19

Рассмотрим матрицу

Матрица - виды, операции и действия с примерами решения

элементы которой характеризуют зависимость средних розничных цен на автомобили от срока их службы в 1998, 1999 и 2000 гг. Строки матрицы соответствуют продолжительности эксплуатации автомобиля, а столбцы — годам. Содержательное значение каждого элемента матрицы определяется его местом в данном массиве чисел. Например, число 3100 во второй строке и втором столбце, элемент с/22> представляет среднюю розничную цену автомобиля прослужившего два года в 1999 г. Следовательно, числа, записанные в строку, характеризуют цены автомобилей, прослуживших один и гот же срок службы в разные годы 1998-2000 гг., а числа в столбце — цены автомобилей различного срока службы в данном году.

В той мере, в какой это связано с характеристикой цен па автомобили, такой выбор строк матрицы полностью произволен, и мы могли бы сразу же поменять местами строки и столбцы без какой-либо потери информации, получив строки для отдельных лет и столбцы для сроков службы, т.е. получили бы транспонированную матрицу по отношению к матрице Р:

Матрица - виды, операции и действия с примерами решения

Хотя элементы матрицы Матрица - виды, операции и действия с примерами решения те же, что и матрицы Р, обе матрицы не одинаковые. Взаимосвязь этих матриц проявляется в том, что строки матрицы Р являются столбцами матрицы Матрица - виды, операции и действия с примерами решения.

Если, элементы Матрица - виды, операции и действия с примерами решения матрицы А неотрицательные (положительные) действительные числа Матрица - виды, операции и действия с примерами решения, то матрица А называется неотрицательной (положительной) и записывается Матрица - виды, операции и действия с примерами решения.

Матрица Р в примере 3.1.1 является положительной матрицей, так как её элементы положительные действительные числа.

Матрица, состоящая из одной строки Матрица - виды, операции и действия с примерами решения, называется матрицей-строкой. Матрица, состоящая из одного столбца

Матрица - виды, операции и действия с примерами решения

называется матрицей-столбцом. Транспонированием переводят матрицу-строку в матрицу-столбец, и наоборот.

Если m=n, то матрица называется квадратной, при этом число строк (столбцов) называется порядком квадратной матрицы.

Рассмотрим некоторые виды квадратных матриц.

Квадратная матрица, у которой все элементы, не стоящие на главной диагонали, равны нулю, называется диагональной. Она обозначается символомМатрица - виды, операции и действия с примерами решения:Матрица - виды, операции и действия с примерами решения

Если в диагональной матрицеМатрица - виды, операции и действия с примерами решения то она называется скалярной. Скалярная матрица, у которой диагональные элементы равны 1, называется единичной:

Матрица - виды, операции и действия с примерами решения Квадратная матрица, у которой все элементы, стоящие ниже главной диагонали, равны нулю, называется верхнетреугольной («матрица А). Аналогично, если в квадратной матрице нулю равны все элементы, стоящие выше главной диагонали, то она называется нижнетреугольной (матрица В).

Матрица - виды, операции и действия с примерами решения

Например, Матрица - виды, операции и действия с примерами решения

Матрица A — верхнеугольная, а В — нижнетреугольная. Квадратная матрица называется ленточной, если все её элементы, не стоящие на главной диагонали и в соседних с ней косых строках, равны нулю. Например,Матрица - виды, операции и действия с примерами решения

В ленточной матрице не равные нулю элементы заполняют «ленту», осью которой служит главная диагональ. Ленточная матрица называется модулированной, если в каждой косой строке стоят одинаковые элементы:Матрица - виды, операции и действия с примерами решения

Квадратная матрица называется симметрической, если её элементы, расположенные симметрично относительно главной диагонали, одинаковы: Матрица - виды, операции и действия с примерами решения; если жеМатрица - виды, операции и действия с примерами решения, то матрица А называется кососимметрической. Симметрическая матрица совпадает с транспонированной матрицей, т.е. Матрица - виды, операции и действия с примерами решения.

Например, матрица, характеризующая влияние факторов на инвестиции и запасы, является симметрической матрицей вида:

Матрица - виды, операции и действия с примерами решения

Элемент Матрица - виды, операции и действия с примерами решения=0,29, характеризующий зависимость использования мощностей и изменения объёмов запасов, совпадает с элементом Матрица - виды, операции и действия с примерами решения=0,29, характеризующим зависимость между изменением объёмов запасов и использованием мощностей; элемент Матрица - виды, операции и действия с примерами решения=0,15, характеризующий зависимость между изменением общей величины хозяйственных запасов и суммой совокупного оборота с поправкой на сезонность, совпадает с элементом Матрица - виды, операции и действия с примерами решения=0,15, характеризующим зависимость между суммой совокупного оборота с поправкой на сезонность и изменением общей величины хозяйственных запасов; элемент Матрица - виды, операции и действия с примерами решения=0,71, характеризующий зависимость между степенью использования производственных мощностей и суммой совокупного оборота с поправкой на сезонность, совпадает с элементом Матрица - виды, операции и действия с примерами решения=0,71, характеризующим зависимость между суммой совокупного оборота с поправкой на сезонность и степенью использования производственных мощностей.

Очевидно, что транспонированная симметричная матрица равна самой матрице.

Квадратная матрица, у которой на главной диагонали стоит одно и го же число Матрица - виды, операции и действия с примерами решения и все элементы одного ряда выше диагонали равны единице, а все другие элементы равны нулю, называется клеткой Жордана:

Матрица - виды, операции и действия с примерами решения

Матрица, у которой на главной диагонали стоят любые клетки Жордана, а все элементы вне этих клеток равны нулю, называется Жордаповой матрицей. Например, матрица является Жордановой.

Матрица - виды, операции и действия с примерами решения

Она содержит четыре клетки Жордана: две клетки второго порядка с числом 3 на диагонали, одну клетку третьего порядка с числом нуль на диагонали и одну клетку первого порядка с числом нуль на диагонали.

Из приведенных примеров следует, что понятие матрицы широко используется в экономике. Кроме того, можно подчеркнуть, что планирование производства должно основываться на надлежащим образом упорядоченной системе информации, записанной в виде матрицы, с помощью которой просто и сжато описываются зависимости, имеющие место в материальном производстве. Так, например, планирование на предприятии основывают, пользуясь нормами как системой информации. Если на предприятии производится четыре продукта Матрица - виды, операции и действия с примерами решенияи для их производства используются материалы Матрица - виды, операции и действия с примерами решения, то система норм материальных затрат, которая представляет собой основу плана снабжения, может быть представлена в виде таблицы (матрицы):

Матрица - виды, операции и действия с примерами решения

где Матрица - виды, операции и действия с примерами решения есть норма расхода Матрица - виды, операции и действия с примерами решенияi-го материала на производство единицы Матрица - виды, операции и действия с примерами решенияj-го продукта. Так норма расхода материала Матрица - виды, операции и действия с примерами решения на производство единицы продукта Матрица - виды, операции и действия с примерами решения соответственно равна Матрица - виды, операции и действия с примерами решения и т.д.

Можно привести следующий пример использования матриц: два предприятия передают свою продукцию на три оптовых склада, причём расходы на перевозку единицы продукции с предприятия 1 на отдельные склады соответственно равняются 2,3,4; а с предприятия 2 они составляют 1,5,2. Тогда матрицаМатрица - виды, операции и действия с примерами решения

есть матрица удельных транспортных расходов.

Следует отметить использование матриц в межотраслевом балансе производства (матрица технологических коэффициентов производства), в определении совокупных затрат труда (матрица коэффициентов материальных затрат) и т.д.

Пример №20

Продавец мороженого решает вопрос о том, сколько пакетов мороженого ему следует закупить. К покупке пакетов мороженого он может прибегнуть один раз. Каждый пакет стоит 10 ден.ед. и может быть продан за 12 ден.ед. Пакеты мороженого, оставшиеся не распроданными, никакой стоимости не представляют. Известно, что количество пакетов мороженого, которое он сможет продать, колеблется от 1 до 5. Составим матрицу денежных сумм, выручаемых в зависимости от его решения и от результатов продажи. По строкам расположим результаты того или иного решения продавца мороженого, а по столбцам — возможный исход продаж.

Решение:

Предположим, что продавец мороженого закупает один пакет. Тогда он его продаст и получает прибыль в 2 ден.ед.

Следовательно, первая строка матрицы будет иметь вид: 2 2 2 2 2. Сели он закупит 2 пакета, то продав один, он потеряет 8 ден.ед.; продав 2 пакета, он получит прибыль 4 ден.ед. Следовательно, вторая строка примет вид: -8 4 4 4 4. Рассуждая аналогичным образом, получаем матрицу:Матрица - виды, операции и действия с примерами решения

Арифметические операции над матрицами

Матрицы А и В считаются равными, если они одинаковой размерности и всс элементы Матрица - виды, операции и действия с примерами решения матрицы А совпадают с соответствующими элементамиМатрица - виды, операции и действия с примерами решения матрицы В, т.е. выполняются Матрица - виды, операции и действия с примерами решения скалярные равенства Матрица - виды, операции и действия с примерами решения, которые равносильны равенству А=В.

Определение 3.2.1. Суммой матриц А а В размерностиМатрица - виды, операции и действия с примерами решения называется матрица S=A+B той же размерности, элементы которой Sik равны суммам соответствующих элементов матриц А и В: Матрица - виды, операции и действия с примерами решения

Из определения следует, что складывают матрицы с одинаковыми размерами, при этом сумма будет матрицей с теми же размерами.

Например,

Матрица - виды, операции и действия с примерами решения

Определение 3.2.2. Произведением матрицы А на скаляр Матрица - виды, операции и действия с примерами решения называется матрица Матрица - виды, операции и действия с примерами решения той же размерности, что и А, элементы которой получены из элементов матрицы А умножением на Матрица - виды, операции и действия с примерами решения. Например,

Матрица - виды, операции и действия с примерами решения

Матрица (-1)A записывается -А и называется матрицей, противоположной матрице А. Если все элементы матрицы равны нулю, го она называется нуль-матрицей и обозначается 0.

Введенные операции сложения матриц и умножения матрицы на скаляр Матрица - виды, операции и действия с примерами решенияобладают свойствами:

  1. А + В = В + А — (перемсстительный) коммутативный закон.
  2. (А + В) + С = А + (B + C);
  3. Матрица - виды, операции и действия с примерами решения.
  4. Матрица - виды, операции и действия с примерами решения.
  5. Матрица - виды, операции и действия с примерами решения.
  6. Матрица - виды, операции и действия с примерами решения.

Определение 3.2.3. Разностью матриц одинаковой размерности называется матрица той же размерности: Матрица - виды, операции и действия с примерами решения, её элементы равны разностям соответствующих элементов матриц А и В: Матрица - виды, операции и действия с примерами решения .

Например,

Матрица - виды, операции и действия с примерами решения

Как и при операции сложения, можно вычитать друг из друга только те матрицы, которые имеют одинаковую размерность.

Прежде чем вводить произведение матриц, рассмотрим произведение векторов. И для пояснения общего метода воспользуемся числовыми примерами.

Предположим, что объем различных продаж за месяц некоторого товара некоторой компании «а» составил 58, 26, 12, 25 единиц за первую, вторую, третью и четвертую недели соответственно, и что цена этого товара по неделям соответственно равна 3, 5, 10, 4 ден.ед. Следовательно, общий доход за месяц от продажи товара равен 58-3 + 26-5+ 12-10 + 25-4 = 524ден.ед. Представим данные

о продажах при помощи матрицы-строки:

Матрица - виды, операции и действия с примерами решения

а соответствующие цены с помощью матрицы-столбца:

Матрица - виды, операции и действия с примерами решения

Тогда общий доход от продажи товара, равный 524 ден.ед., представляет собой сумму произведений элементов матрицы-строки A (количество проданного товара по неделям) на соответствующие элементы матрицы-столбца В (цены по неделям на товар): Матрица - виды, операции и действия с примерами решения

Приведенный пример помогает уяснить общую методику вычисления произведения матрицы-строки на матрицу-столбец: для этого каждый элемент матрицы-строки А нужно умножить на соответствующий элемент матрицы-столбца В и сложить полученные произведения.

Предположим теперь, что компания «а» имеет отделения в трёх различных регионах. Данные о количестве проданного товара по регионам запишем в виде матрицы С:

Матрица - виды, операции и действия с примерами решения

Цена по неделям за месяц была такой же. Доход от розничной продажи в первом регионе был вычислен; аналогичные расчёты могут быть произведены и по двум другим регионам:

Матрица - виды, операции и действия с примерами решения

Представим итоговые данные по выручке в виде матрицы-столбца:

Матрица - виды, операции и действия с примерами решения

Взглянув на вычисления, можно убедиться в том, что элементы этой матрицы-столбца получаются так же, как и описанное ранее произведение матрицы-строки А на матрицу-столбец В, причем в качестве матрицы-строки А в каждом случае взята последующая строка матрицы С. Полученный результат представляет произведение СВ:

Матрица - виды, операции и действия с примерами решения

В общем случае произведение матрицы С на матрицу-столбец В, это вектор-столбец,i-Й элемент которого представляет сумму произведений каждого из элементов i-й строки матрицы С на соответствующие элементы вектора-столбца В.

Из этого примера следует, что произведение Матрица - виды, операции и действия с примерами решения существует только в том случае, когда число элементов в строках матрицы С (т.е. число столбцов) равно числу элементов, составляющих вектор-столбец В (т.е. числу строк). При соблюдении этого равенства, произведение Матрица - виды, операции и действия с примерами решения образует вектор-столбец, содержащий столько элементов, сколько строк насчитывается в матрице С. Следовательно, если в матрице С содержится т строк и q столбцов и порядок матрицы-столбца В равен q, тогда произведение Матрица - виды, операции и действия с примерами решения представляет собой матрицу-столбец порядка т, причем i-й элемент этого вектора равен

Матрица - виды, операции и действия с примерами решения

Аналогичным образом определяется произведение матрицы-строки Матрица - виды, операции и действия с примерами решения на матрицу Р. Оно существует в том случае,

если число элементов матрицы-строки D равно числу элементов в столбцах матрицы Р (т.е. равно числу строк этой матрицы). В этом случае произведении Матрица - виды, операции и действия с примерами решения образует матрицу-строку, содержащую столько же элементов, сколько столбцов насчитывается в матрице Р. При этом произведение Матрица - виды, операции и действия с примерами решения равно Матрица - виды, операции и действия с примерами решения , произведение Матрица - виды, операции и действия с примерами решения может к не существовать, несмотря на то что, существует произведение Матрица - виды, операции и действия с примерами решения, и наоборот.

Пример №21

Пусть матрица

Матрица - виды, операции и действия с примерами решения

характеризует переход подписчика от одной газеты к другой в зависимости от продолжительности подписки. В этой матрице перехода данные сгруппированы по строкам и столбцам в соответствии с продолжительностью подписки: до одного года, от одного года до двух лет, более двух лет и, наконец, аннулирование подписки. Элементы первой строки характеризуют состояние подписчиков газет с продолжительностью подписки до одного года; второй строки — с продолжительностью подписки от одного года до двух лет; третья строка — с продолжительностью подписки более двух лет; элементы четвертой строки характеризуют аннулирование подписки. Элементы первого столбца характеризуют возможность остаться в категории подписчиков до одного года; элементы второго столбца — возможность продолжить подписку от одного до двух лет, если подписчик имеет продолжительность подписки до одного года; элементы третьего столбца- возможность продолжить подписку более двух лет: элементы четвертого столбца — возможность аннулировать подписку.

Предположим, что известно распределение 5000 подписчиков по продолжительности подписки на газеты: 3000 имеют продолжительность подписки до одного года (категория 1), 800 — имеют продолжительность подписки от одного до двух лет (категория 2), 1200 подписчиков имеют, продолжительность подписки более двух лет (категория 3). Представим эти данные в виде матрицы-строки Q =Матрица - виды, операции и действия с примерами решения.

Для того чтобы определить возможное количество подписчиков в каждой из этих категорий через год, умножим матрицу-строку Q на матрицу Р:

Матрица - виды, операции и действия с примерами решения

Матрица-строка, полученная в результате умножения, показывает, что из I категории через год возможно 2100 подписчиков будут принадлежать к категории II, 1720- к категории III, и 1180 возможно аннулируют подписку.

Учитывая введенные операции, умножение двух матриц А и В можно представить как многократное умножение матрицы А на матрицы-столбцы, рассматривая вторую матрицу В как набор мат-риц-столбцов. При этом произведение матриц А и В может иметь смысл только в том случае, когда j-й столбец матрицы В (а, следовательно, и все ее столбцы) насчитывают тоже число элементов, что и i-я строка матрицы А (а, следовательно, и все ее строки). Поскольку количество элементов в столбце матрицы равно числу строк в ней (а количество элементов в строке равно количеству столбцов) это означает, что в матрице В должно быть столько же строк, сколько столбцов содержит матрица А.

Таким образом, произведение матрицы Матрица - виды, операции и действия с примерами решения определено, когда число столбцов в А равно числу строк в В. Тогда произведение Матрица - виды, операции и действия с примерами решения содержит то же количество строк, что и матрица А, и то же количество столбцов, что и матрица В.

Если число столбцов в А равно числу строк в В, то матрицы называются согласованными для умножения А на В. При этом если А размерности т * п, а В размерность Матрица - виды, операции и действия с примерами решения, то произведение Матрица - виды, операции и действия с примерами решения является матрицей размерности Матрица - виды, операции и действия с примерами решения, т. е.:

Матрица - виды, операции и действия с примерами решения

Определение 3.2.4. Произведением матрицы А размерности Матрица - виды, операции и действия с примерами решения на матрицу В размерности Матрица - виды, операции и действия с примерами решенияназывается матрица Р размерности Матрица - виды, операции и действия с примерами решения, элементы которой Матрица - виды, операции и действия с примерами решенияопределяется формулами:

Матрица - виды, операции и действия с примерами решения

, при Матрица - виды, операции и действия с примерами решения, т.е. Матрица - виды, операции и действия с примерами решения элемент равен сумме произведений элементов i-й строки матрицы А на соответствующие элементы j-ого столбца матрицы В.

  • Заказать решение задач по высшей математике

Пример №22

Пусть Матрица - виды, операции и действия с примерами решения Матрица А содержит три столбца, а В содержит три строки. Следовательно, матрицы А и В согласованные для умножения. Тогда Матрица - виды, операции и действия с примерами решения

Произведение матриц, вообще говоря, не коммутативно, т.е. А В не всегда равно Матрица - виды, операции и действия с примерами решения. Например, Матрица - виды, операции и действия с примерами решения

Из приведенного примера следует, что, перемножая матрицы А и В, можно получить два произведения Матрица - виды, операции и действия с примерами решения к Матрица - виды, операции и действия с примерами решения. Если размеры матрицы A равны Матрица - виды, операции и действия с примерами решения, то оба произведения существуют только в том случае, когда размеры матрицы В равны Матрица - виды, операции и действия с примерами решения. Тогда произведение Матрица - виды, операции и действия с примерами решения образует квадратную матрицу порядка m, а произведение Матрица - виды, операции и действия с примерами решения — квадратную матрицу n. Поэтому размеры АВ могут быть равны ВА в том случае, когда m = n, т.е. когда обе матрицы квадратные и имеют один и тот же порядок равный m. При этом указанные произведения матриц могут не иметь ни одного одинакового элемента, полученного в результате суммирования произведений соотвстствующих элементов исходных матриц. Поэтому, если даже существуют оба произведения АВ и ВА и оба они имеют одинаковый порядок, вообще говоря, они не обязательно должны быть равны между собой, что и показывает приведенный выше пример.

Из сказанного не следует, что АВ и ВА всегда должны различаться между собой, в отдельных случаях они могут быть равны. Например, Матрица - виды, операции и действия с примерами решения

В двух случаях, имеющих особо важное значение, произведение матриц обладает свойством коммутативности:

1) в случае умножения на нулевую матрицу: если Матрица - виды, операции и действия с примерами решения представляет собой квадратную матрицу п-ого порядка, а Матрица - виды, операции и действия с примерами решения — аналогичную матрицу, все элементы которой составляют нули, тогда

Матрица - виды, операции и действия с примерами решения

Нулевая матрица выполняет роль нуля в матричной алгебре;

2) в случае умножения на единичную матрицу: если Матрица - виды, операции и действия с примерами решения представляет собой квадратную матрицу n-ого порядка, а Матрица - виды, операции и действия с примерами решения— аналогичную единичную матрицу, то

Матрица - виды, операции и действия с примерами решения

Единичная матрица того же порядка служит единицей в матричной алгебре. Например, Матрица - виды, операции и действия с примерами решения

Отметим, что произведение матрицы на скалярную величину так же коммутативно: Матрица - виды, операции и действия с примерами решения

Матрицу А можно умножить саму на себя тогда и только тогда, когда она квадратная. Если n — натуральное число, больше единицы, то Матрица - виды, операции и действия с примерами решения есть произведение n матриц равных А. Для действий со степенями матриц справедливы следующие правила: Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения ,если АВ = ВА.

Значением многочлена

Матрица - виды, операции и действия с примерами решения

с числовыми коэффициентами Матрица - виды, операции и действия с примерами решения от матрицы А или значением многочлена Матрица - виды, операции и действия с примерами решения при х = А называется матрицаМатрица - виды, операции и действия с примерами решения

где Е- единичная матрица.

Многочленной матрицей называется прямоугольная (в частности квадратная) матрица А, элементы которой являются многочленами от одной переменной х с числовыми коэффициентами. Матричным многочленом называется выражение вида

Матрица - виды, операции и действия с примерами решения

где х- переменное и Матрица - виды, операции и действия с примерами решения— квадратные матрицы с числовыми элементами одного и того же порядка n. Число n называется порядком многочлена F(x). Если Матрица - виды, операции и действия с примерами решения, то число m называется степенью матричного многочлена F{x). Если матрица Матрица - виды, операции и действия с примерами решения не вырождена, т.е. Матрица - виды, операции и действия с примерами решения, то матричный многочлен F(x) называется регулярным.

Два матричных многочлена одинакового порядка можно складывать, вычитать и умножать аналогично обычным многочленам с числовыми коэффициентами, с той разницей, что умножение числовых матриц, а потому и матричных многочленов не обязательно коммутативно.

Операцию умножения для матриц можно ввести иначе. Пусть задана матрица размерности Матрица - виды, операции и действия с примерами решения: Матрица - виды, операции и действия с примерами решения

Обозначим столбцы матрицы А следующим образом: Матрица - виды, операции и действия с примерами решения

их называют векторами-столбцами; а строки:

Матрица - виды, операции и действия с примерами решения

которые называют векторами-строками.

Пример №23

Пусть число трёх типов игрушек, которые нужно изготовить, равно соответственно 20, 30, 40. Определим число деталей каждого вида, необходимых для сборки игрушек при полном удовлетворении заказа на них.

Решение:

Составим матрицу А, в которой по строкам укажем число деталей одного вида, необходимых для производства трёх типов игрушек, а по столбцам — число деталей трех видов, необходимых для производства одной игрушки трёх типов:

Матрица - виды, операции и действия с примерами решения

Число деталей каждого вида, необходимых для сборки игрушек при полном удовлетворении заказа определим умножением матрицы А на матрицу-столбец, характеризующую число игрушек:

Матрица - виды, операции и действия с примерами решения

Зная количество деталей, необходимых для производства одной игрушки, можно определить потребность в сырье для производства одной игрушки, если известны нормы расхода сырья для производства одной детали, которые приведены в таблице 3.2.2.

Матрица - виды, операции и действия с примерами решения

Эти потребности в сырье определяются умножением матриц

Матрица - виды, операции и действия с примерами решения

Умножив результат произведения матриц на количество игрушек, определим потребности в сырье для выполнения заказа

Матрица - виды, операции и действия с примерами решения

Приведенный пример иллюстрирует простоту решения задачи при помощи умножения матриц.

Пример №24

Предположим, что затраты рабочего времени в часах на каждом рабочем месте и на каждое изделие заданы в таблице 3.2.3. Количество изделий (в штуках) в каждом заказе задано в таблице 3.2.4. Часовая заработная плата (в рублях) на каждом рабочем месте задана в таблице 3.2.5

Решение:

Рассчитаем заработную плату, приходящуюся при производстве различных изделий на каждый заказ. Матрица - виды, операции и действия с примерами решения

Решение. Введем в рассмотрение следующие матрицы:

Матрица - виды, операции и действия с примерами решения где А — матрица затрат, В — матрица спроса, С — матрица почасовой зарплаты.

Так как матрица С задает зависимость между величиной заработной платы и затратами рабочего времени на каждом рабочем месте, а матрица А — между затратами времени на каждом рабочем месте и выпуском изделий, то произведение АС задает линейную зависимость между выпуском одного изделия и величиной заработной платы. Поскольку матрица В определяет количество изделий в каждом заказе, то произведение В(АС) определяет выполнение каждого заказа. Поэтому, вычислив произведение В (АС):

Матрица - виды, операции и действия с примерами решения находим заработную плату, приходящуюся на заказ Матрица - виды, операции и действия с примерами решения равную 23920 руб., на заказ Матрица - виды, операции и действия с примерами решения — 23640 руб. и на заказ Матрица - виды, операции и действия с примерами решения — 24850 руб.

Блочные матрицы и действия над ними

Для упрощения действий над матрицами больших размеров выполняют переход к матрицам меньших размеров путём разбиения их на клетки горизонтальными и вертикальными прямыми, пересекающими всю матрицу.

Например, проведём в матрице А две горизонтальные и две вертикальные прямые: Матрица - виды, операции и действия с примерами решения

Получим 9 клеток, каждая из которых будет некоторой матрицей. Введём для них обозначения:

Матрица - виды, операции и действия с примерами решения

Тогда матрицу А можно записать в виде:

Матрица - виды, операции и действия с примерами решения

Полученную матрицу называют блочной, или клеточной. Любую матрицу множеством способов можно представить в блочной форме. Особый интерес представляют блочные матрицы, имеющие квадратные диагональные клетки. Например, Матрица - виды, операции и действия с примерами решения

В матрице В клетки Матрица - виды, операции и действия с примерами решения — квадратные матрицы третьего, второго и первого порядка соответственно.

Если у блочных матриц число диагональных клеток одинаково, причём соответственные диагональные клетки имеют один и тот же порядок, то такие матрицы называются конформными.

Блочная матрица, у которой все клетки, кроме стоящих на главной диагонали, являются нуль-матрицами, называется квазидиагональной. Примером квазидиагональной матрицы является матрица

вида: Матрица - виды, операции и действия с примерами решения Квазидиагональная матрица обозначается Матрица - виды, операции и действия с примерами решения, где

Матрица - виды, операции и действия с примерами решения — её диагональные квадратные клетки.

Если к квадратной матрице а добавить снизу матрицу-строку, справа — матрицу-столбец и в правом нижнем углу добавить элемент, то полученная блочная матрица называется окаймлённой.

Матрица - виды, операции и действия с примерами решения

Арифметические операции над блочными матрицами выражаются через операции над клетками матриц. Такое выражение возможно для конформных матриц.

1) Сложение блочных матриц производится аналогично правилу сложения обычных матриц: Матрица - виды, операции и действия с примерами решения Подчеркнем, что можно складывать только конформные матрицы. В противном случае равенство не имеет смысла.

2) При умножении блочной матрицы на скаляр все клетки блочной матрицы умножаются на этот скаляр: Матрица - виды, операции и действия с примерами решения

3) Произведение конформных блочных матриц формально совпадает с правилом умножения обычных матриц:

Матрица - виды, операции и действия с примерами решения

При умножении матриц соответственные диагональные клетки умножаемых матриц должны иметь одинаковый порядок. В противном случае блочные матрицы не будут конформными и их умножать нельзя.

Произведением конформных квазидиагональных матриц является квазидиагональная матрица с той же структурой, причём каждая диагональная клетка произведения является произведением соответствующих диагональных клеток сомножителей:

Матрица - виды, операции и действия с примерами решения

При транспонировании квазидиагональной матрицы получаем квазидиагональную матрицу, диагональные клетки которой являются транспонированными матрицами:

Матрица - виды, операции и действия с примерами решения

Матрица А, которую одновременной перестановкой строк и столбцов можно привести к блочному виду

Матрица - виды, операции и действия с примерами решения

где Матрица - виды, операции и действия с примерами решения — квадратные блоки, включающие ненулевые элементы; О — блок, состоящий только из нулей; В — блок, элементы которого могут принимать любые значения, называется разложимой матрицей.

Матрица неразложима если для неё не существует таких одновременных перестановок строк и столбцов, которые приводили бы сё к разложимой форме.

Оператор суммирования и его свойства

В экономических исследованиях часто употребляются переменные, определенные на дискретных множествах Матрица - виды, операции и действия с примерами решения

илиМатрица - виды, операции и действия с примерами решения и рассматриваются их суммы. Символом операции

суммирования служит заглавная греческая буква Матрица - виды, операции и действия с примерами решения (сигма). Тогда,

например, сумму Матрица - виды, операции и действия с примерами решения можно записать в видехМатрица - виды, операции и действия с примерами решения . Числа сточщие под знаком Матрица - виды, операции и действия с примерами решения и над ним, называются пределами суммирования и указывают наибольшие и наименьшие значения индекса суммирования, между которыми расположены его промежуточные значения.

Для оператора суммирования справедливы следующие тождества:

Существует также способ записи операции умножения с помощью прописной греческой буквы «пи» — П : Так, например, произ-ведение пяти множителей можно сокращенно записать:

Матрица - виды, операции и действия с примерами решения

Перестановки

Рассмотрим n целых чисел (элементов) Матрица - виды, операции и действия с примерами решения. Их можно располагать в различном порядке. Всевозможные расположения этих чисел называются перестановками. Перестановка Матрица - виды, операции и действия с примерами решения, в которой числа идут в порядке возрастания, называется натуральной. Например, из трех чисел можно составить 6 перестановок: (123), (132), (213), (231), (312), (321). Справедливо следующее утверждение: «Из n чисел можно составить n! перестановок». Символ n! читается юн факториал» и обозначает произведение последовательных натуральных чисел: 0!=1; 1!=1; Матрица - виды, операции и действия с примерами решения; Матрица - виды, операции и действия с примерами решения; … Матрица - виды, операции и действия с примерами решения.

Назовем беспорядком (или инверсией) в перестановке тот факт, что большее число стоит перед меньшим. Если перестановка имеет четное число инверсий, то она называется четной, в противном случае — нечетной. Обмен местами двух элементов в перестановке называется транспозицией. Например:

Матрица - виды, операции и действия с примерами решения

Транспозиция переводит одну перестановку в другую и меняет четность перестановки.

Определение определителя

Рассмотрим квадратную матрицу размерности п и составим из ее элементов таблицу вида

Матрица - виды, операции и действия с примерами решения

или более компактно: Матрица - виды, операции и действия с примерами решения. Каждый элемент Матрица - виды, операции и действия с примерами решения имеет два индекса, первый из которых указывает, какой строке принадлежит элемент, а второй — какому столбцу.

Этой таблице соотнесем число, называемое определителем, вычисляемое по правилу, сформулированному в следующем определении.

Определение 3.6.1. Определителем n-го порядка называется алгебраическая сумма n! членов, каждый из которых представляет собой произведение n элементов Матрица - виды, операции и действия с примерами решения, взятых по одному из каждой

строки и каждого столбца; при этом член определителя берется со знаком «+», если вторые индексы его элементов образуют чётную перестановку, и со знаком «—», если эта перестановка нечетная, а первые индексы образуют натуральную перестановку.

Определитель n-то порядка обозначается в виде таблицы (3.6.1), где горизонтали — строки, а вертикали — столбцы.

Введем величину:

Матрица - виды, операции и действия с примерами решения

Тогда в силу определения 3.6.1 определитель n-то порядка запишется в виде:

Матрица - виды, операции и действия с примерами решения

Суммирование распространяется на все перестановки Матрица - виды, операции и действия с примерами решения из n чисел 1,2,…,n, что условно обозначили символом n!

В частности, определителем второго порядкаМатрица - виды, операции и действия с примерами решенияназывается алгебраическая сумма двух слагаемых Матрица - виды, операции и действия с примерами решения, каждое из которых равно произведению двух элементов. Согласно определению 3.6.1, первое слагаемое имеет знак «+», а второе — знак «-». Следовательно, для нахождения определителя второго порядка, нужно из произведения элементов, стоящих на главной диагонали вычесть произведение элементов стоящих на побочной диагонали:

Матрица - виды, операции и действия с примерами решения

Таким образом, каждой квадратной матрице А можно поставить в соответствие некоторое число, называемое определителем матрицы и обозначаемое Матрица - виды, операции и действия с примерами решения.

Свойства определителя n-го порядка

Свойствами, сформулированными ниже, обладают определители любого порядка, в частности второго и третьего порядков.

Матрица - виды, операции и действия с примерами решения. Величина определителя при его транспонировании (т. е. при замене его строк соответствующими столбцами) не меняется.

Доказательство. Рассмотрим определитель Матрица - виды, операции и действия с примерами решения . Протранспонируем его; получим определитель Матрица - виды, операции и действия с примерами решения, т. е. элементы строки и i-го столбца определителя Матрица - виды, операции и действия с примерами решения совпадают с элементами из i-й строки и k-го столбца определителя D. Тогда по определению

Матрица - виды, операции и действия с примерами решения

В каждом слагаемом формулы (4.1) переставим сомножители таким образом, чтобы их первые индексы составили натуральную перестановку; вторые индексы образуют произвольную перестановку:

Матрица - виды, операции и действия с примерами решения

Перестановки Матрица - виды, операции и действия с примерами решения иМатрица - виды, операции и действия с примерами решения разные, но обладают одинаковой четностью, так как одним и тем же числом транспозиций перестановка Матрица - виды, операции и действия с примерами решения переводится в натуральную, а перестановку Матрица - виды, операции и действия с примерами решения получаем из натуральной. Поэтому Матрица - виды, операции и действия с примерами решения, и равенство (3.7.1) принимает вид:

Матрица - виды, операции и действия с примерами решения

Так как Матрица - виды, операции и действия с примерами решения то Матрица - виды, операции и действия с примерами решения чтo и требовалось доказать.

Из свойства Матрица - виды, операции и действия с примерами решения вытекает, что строки и столбцы определителя равноправны. Поэтому любое свойство доказанное для строк, справедливо и для столбцов.

Матрица - виды, операции и действия с примерами решения. Если в определителе поменять местами две строки (столбца), то у него изменится только знак, а абсолютная величина останется прежней.

Доказательство. Рассмотрим определитель Матрица - виды, операции и действия с примерами решения, в котором переставим l-ую и m-ую строки. При этом считаем, что Матрица - виды, операции и действия с примерами решения. Получим определитель Матрица - виды, операции и действия с примерами решения, элементы которого связаны с элементами определителя Матрица - виды, операции и действия с примерами решения соотношениями

Матрица - виды, операции и действия с примерами решения

В силу равенств (3.7.2) преобразуем определитель

Матрица - виды, операции и действия с примерами решения

к виду

Матрица - виды, операции и действия с примерами решения

Выполним в перестановке Матрица - виды, операции и действия с примерами решения одну транспозицию Матрица - виды, операции и действия с примерами решения, в результате четность перестановки изменится на противоположную:

Матрица - виды, операции и действия с примерами решения

Затем поменяем местами сомножители Матрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решения в произведении Матрица - виды, операции и действия с примерами решения . Произведение при этом не изменится, а равенство (3.7.3) примет вид

Матрица - виды, операции и действия с примерами решения

В равенстве (3.7.4) первые индексы элементов образуют натуральную перестановку Матрица - виды, операции и действия с примерами решения, т. к. Матрица - виды, операции и действия с примерами решения, а перестановка из

вторых индексов такая же, как и в выраженииМатрица - виды, операции и действия с примерами решения . Поэтому сумма правой части формулы (3.7.4) равна определителю Матрица - виды, операции и действия с примерами решения, т. е. Матрица - виды, операции и действия с примерами решения. что и требовалось доказать.

Матрица - виды, операции и действия с примерами решения. Определитель с двумя одинаковыми строками (столбцами) равен нулю.

Доказательство. Так как по условию две строки одинаковы, то их перестановка не меняет величины Матрица - виды, операции и действия с примерами решения определителя. С другой стороны, по свойству Матрица - виды, операции и действия с примерами решения в результате перестановки знак определителя изменится, т. с. Матрица - виды, операции и действия с примерами решения. Следовательно, Матрица - виды, операции и действия с примерами решения.

Матрица - виды, операции и действия с примерами решения. Если все элементы строки (столбца) содержат общий множитель, то его можно вынести за знак определителя.

Доказательство. Пусть в определителе Матрица - виды, операции и действия с примерами решения l-тая строка содержит общий множитель, тогда по определению его можно записать в виде:

Матрица - виды, операции и действия с примерами решения

Из (3.7.5) следует, что каждое слагаемое содержит множителем число Матрица - виды, операции и действия с примерами решения, его можно вынести за знак суммы, т. с. преобразовать

Матрица - виды, операции и действия с примерами решения

Из свойства Матрица - виды, операции и действия с примерами решения вытекает:

Следствие 3.7.1. Определитель с двумя пропорциональными строками (столбцами) равен нулю.

Действительно, по свойству Матрица - виды, операции и действия с примерами решения общий множитель у одной из строк, пропорциональной другой, можно вынести за знак определителя. Получим определитель с двумя одинаковыми строками, а в силу свойства Матрица - виды, операции и действия с примерами решения он равен нулю.

Матрица - виды, операции и действия с примерами решения. Если все элементы строки (столбца) являются суммами из одинакового числа слагаемых, то определитель равен сумме определителей, у которых элементами этой строки (столбца) служат отдельные слагаемые.

Доказательство. Пусть все элементы Матрица - виды, операции и действия с примерами решения i-той строки определителя Матрица - виды, операции и действия с примерами решения являются суммами из одинакового числа слагаемых: Матрица - виды, операции и действия с примерами решения. Тогда определитель имеет вид:

Матрица - виды, операции и действия с примерами решения

В силу определения его можно записать:

Матрица - виды, операции и действия с примерами решения

но так как Матрица - виды, операции и действия с примерами решения

то

Матрица - виды, операции и действия с примерами решения

что и требовалось доказать.

Следствие 3.7.2. Величина определителя не изменится, если /с элементам любой его строки (столбца) прибавить соответствующие элементы другой строки (столбца), умножив их предварительно на один и тот же множитель.

Действительно, если мы рассмотрим определитель

Матрица - виды, операции и действия с примерами решения полученный из Матрица - виды, операции и действия с примерами решения прибавляем к элементам l строки соответствующие элементы m строки, то в силу свойства Матрица - виды, операции и действия с примерами решения его можно представить в виде суммы двух определителей, т. е.

Матрица - виды, операции и действия с примерами решения

так как второе слагаемое равно 0 как определитель с двумя пропорциональными строками.

Миноры и алгебраические дополнения

Определение 3.8.1. Если в определителе n-го порядка вычеркнем i-ую строку и k-ый столбец, на пересечении которых находится элемент Матрица - виды, операции и действия с примерами решения, то полученный определитель (n-1)-го порядка называется минором исходного определителя Матрица - виды, операции и действия с примерами решения, соответствующего элементу Матрица - виды, операции и действия с примерами решения, и обозначается Матрица - виды, операции и действия с примерами решения. Например, если

Матрица - виды, операции и действия с примерами решения

Определение 3.8.1. Минор Матрица - виды, операции и действия с примерами решения с определенным знаком, зависящим от четности суммы i+k номеров строки и столбца, на пересечении которых находится элемент Матрица - виды, операции и действия с примерами решения называется алгебраическим дополнением элемента Матрица - виды, операции и действия с примерами решения в определителе Матрица - виды, операции и действия с примерами решения и обозначается

Матрица - виды, операции и действия с примерами решения.

С помощью алгебраических дополнений определитель порядка п может быть выражен через определители порядка n-1. Этот факт справедлив для определителей имеющих специальную структуру, т. е. имеют место

Лемма 3.8.1. Если в определителе порядка n все элементы последней строки (столбца), кроме элемента, стоящего в правом нижнем углу, равны нулю, то определитель равен произведению этого элемента на соответствующий ему минор.

Лемма 3.8.2. Если в определителе порядка n все элементы какой-либо строки (столбца), кроме одного, равны нулю, то определитель равен произведению этого элемента на его алгебраическое дополнение.

Из сформулированных лемм вытекают следующие теоремы:

Теорема 3.8.1. (теорема разложения). Определитель порядка п равен сумме парных произведений элементов любой строки (столбца) на их алгебраические дополнения: Матрица - виды, операции и действия с примерами решения .

Доказательство. Так как строки и столбцы равносильны, то достаточно проверить справедливость равенства: Матрица - виды, операции и действия с примерами решения

Представим каждый элемент i-й строки определителяМатрица - виды, операции и действия с примерами решения в виде суммы n слагаемых, из которых n-1 слагаемое равно нулю

Матрица - виды, операции и действия с примерами решения

тогда его можно представить в виде суммы определителей (по свойству Матрица - виды, операции и действия с примерами решения):

Матрица - виды, операции и действия с примерами решения

Определитель Матрица - виды, операции и действия с примерами решения по лемме 2 равен произведению элемента Матрица - виды, операции и действия с примерами решения на его алгебраическое дополнение в этом определителе. Но так как определитель Матрица - виды, операции и действия с примерами решения отличается от Матрица - виды, операции и действия с примерами решения лишь элементами i-й строки, го это алгебраическое дополнение совпадает с алгебраическим дополнением Матрица - виды, операции и действия с примерами решения элемента Матрица - виды, операции и действия с примерами решения, определителя Матрица - виды, операции и действия с примерами решения, так как эта строка и столбец будут вычеркнуты, а все остальные элементы определителя Матрица - виды, операции и действия с примерами решения, и Матрица - виды, операции и действия с примерами решения совпадают.

Следовательно,Матрица - виды, операции и действия с примерами решения.

Аналогично Матрица - виды, операции и действия с примерами решения и поэтому (т. к. Матрица - виды, операции и действия с примерами решения

Теорема 3.8.2. (теорема аннулирования). Сумма парных произведений элементов любой строки (столбца) определителя на алгебраические дополнения параллельной строки (столбца) равна нулю:

Матрица - виды, операции и действия с примерами решения, где i, j — строки определителя Матрица - виды, операции и действия с примерами решения.

Вычисление определителей

Укажем некоторые способы вычисления определителей.

1) По теореме 3.8.1 определитель любого порядка п выражается через n определителей (n-1)-го порядка. Применяя эту теорему несколько раз, можно преобразовать исходный определитель к некоторому числу определителей третьего порядка, вычисление которых не представляет труда. Однако для упрощения вычислений целесообразно предварительно преобразовать определитель так, чтобы в одном из его рядов все элементы, кроме одного, обратились в нуль. Тогда данный определитель сведется к определителю более низкого порядка, и т. д.

2) Пользуясь свойствами определителя, приводят его к треугольному виду, когда все элементы, стоящие по одну сторону от главной диагонали, равны нулю. Полученный определитель треугольного вида равен произведению элементов главной диагонали, т. е. Матрица - виды, операции и действия с примерами решения

Если удобнее получить нули по одну сторону от побочной диагонали, то Матрица - виды, операции и действия с примерами решениягде Матрица - виды, операции и действия с примерами решения приведен уже к треугольному виду.

3) Если определитель Матрица - виды, операции и действия с примерами решения порядка n после разложения по строке или столбцу и после преобразования, выражается через определители того же вида, но более низких порядков, то полученное равенство называется рекуррентным. Вычисляют столько определителей данного вида начальных порядков, сколько их входит в правую часть рекуррентного соотношения. Далее вычисляют определители высших порядков, используя рекуррентные соотношения, до тех пор, пока не удастся заметить общую закономерность для получаемых выражений. Для общего случая доказывают индукцией по п эту закономерность.

Определитель квазидиагональной матрицы равен произведению определителей её диагональных клеток:

Матрица - виды, операции и действия с примерами решения.

Определитель второго порядка, согласно определению 3.6.1 равен произведению диагональных элементов минус произведение элементов побочной диагонали. Например,

Матрица - виды, операции и действия с примерами решения.

Определитель третьего порядка по определению 3.6.1. равен алгебраической сумме шести слагаемых. Построение этой суммы можно выполнить по правилу Саррюса. Со знаком «+» и рассматривая произведение элементов определителя, обозначенных на схеме точками

Матрица - виды, операции и действия с примерами решения

Hстример,

Матрица - виды, операции и действия с примерами решения

Определители выше третьего порядков вычисляются либо сведением к треугольному виду, либо используя теорему разложения или используя рекуррентную формулу. Например,

Матрица - виды, операции и действия с примерами решения

(последовательно умножим первую строку на 2; 4; 3 и вычтем получающиеся при этом строки из второй, третьей и четвертой строк)

Матрица - виды, операции и действия с примерами решения

Матрица - виды, операции и действия с примерами решения

(умножим третью строку на 20/34 и вычтем из четвертой строки; сомножитель четвертой строки 1/34 вынесем за знак определителя; в результате получим определитель верхнетреуголыюго вида, который равен произведению элементов, стоящих на главной диагонали) .

Матрица - виды, операции и действия с примерами решения

Матрицы и операции над матрицами

Матрицей размера Матрица - виды, операции и действия с примерами решения называется прямоугольная таблица чисел Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решениявида Матрица - виды, операции и действия с примерами решения состоящая из m строк и n столбцов. Числа Матрица - виды, операции и действия с примерами решения называются элементами матрицы, где i — индекс строки, j — индекс столбца. Обозначение: Матрица - виды, операции и действия с примерами решенияМатрица - виды, операции и действия с примерами решения

Например, элемент Матрица - виды, операции и действия с примерами решения(читается «а три пять») в таблице будет расположен в третьей строке и пятом столбце.

Суммой двух матриц одинакового размера Матрица - виды, операции и действия с примерами решения называется матрица Матрица - виды, операции и действия с примерами решения того же порядка, каждый элемент которой равен сумме соответствующих элементов матриц Матрица - виды, операции и действия с примерами решения и Матрица - виды, операции и действия с примерами решения

Например,Матрица - виды, операции и действия с примерами решения

Произведением матрицы Матрица - виды, операции и действия с примерами решения на действительное число Матрица - виды, операции и действия с примерами решения. называется такая матрица Матрица - виды, операции и действия с примерами решения что Матрица - виды, операции и действия с примерами решения

Например,

Матрица - виды, операции и действия с примерами решения Если количество столбцов первой матрицы (множимой) равно количеству строк второй матрица (множителя), то матрицы называются согласованными.

Внимание! Умножаются только согласованные матрицы.

Произведением матрицы А размера Матрица - виды, операции и действия с примерами решения (n столбцов) на матрицу В размера Матрица - виды, операции и действия с примерами решения(n строк) называется матрица С размера Матрица - виды, операции и действия с примерами решения каждый элемент которой Матрица - виды, операции и действия с примерами решенияравен сумме произведений элементов i-й строки матрицы А на соответствующие элементы j-ro столбца матрицы В, т.е. Матрица - виды, операции и действия с примерами решения («i-ю строку первой матрицы умножаем на j-й столбец второй матрицы»). Число строк матрицы произведения С равно числу строк матрицы А, а число столбцов матрицы С равно числу столбцов матрицы В.

Пример:

Даны матрицы

Матрица - виды, операции и действия с примерами решения

Найти то из произведений АВ, В А, которое существует.

Решение:

Найдем произведение матриц АВ. Оно существует, т.к. количество столбцов матрицы А равно количеству строк матрицы В и равно двум.

Например, элемент произведения матриц с индексом 12 равен по определению сумме произведений элементов 1-й строки матрицы А на соответствующие элементы 2-го столбца матрицы В:

Матрица - виды, операции и действия с примерами решения

Тогда Матрица - виды, операции и действия с примерами решения

Рассмотрим произведение матриц ВА. Число столбцов матрицы В (n=3) не совпадает с числом строк матрицы А (m=2). Произведение матриц ВА не существует.

Вывод. В общем случае произведение матриц не коммутативно, т.е. не всегда АВ=ВА.

Если АВ=ВА, то матрицы А и В называются перестановочными.

Матрица, полученная из данной заменой каждой ее строки столбцом с тем же номером, называется матрицей, транспонированной к данной. Обозначение: Матрица - виды, операции и действия с примерами решения или Матрица - виды, операции и действия с примерами решения

Например, Матрица - виды, операции и действия с примерами решения

  • Линейный оператор — свойства и определение
  • Многочлен — виды, определение с примерами
  • Квадратичные формы — определение и понятие
  • Системы линейных уравнений с примерами
  • Прямая — понятие, виды и её свойства
  • Плоскость — определение, виды и правила
  • Кривые второго порядка
  • Евклидово пространство

Произведением двух матриц будет матрица , элементы которой равны сумме попарных произведений элементов строки первой матрицы на соответствующие элементы столбца второй матрицы :

Из этого следует что перемножить между собой можно матрицы в которых количество столбцов первой равно количеству строк второй . Новая матрица которая является произведением двух имеет размерность , где – количество строк первой матрицы, а – столбцов второй. Правила достаточно просты и для нахождения произведения матриц нужно уметь лиш умножать и прибавлять. Рассмотрим несколько примеров из сборника задач Дубовика В.П., Юрика И.И. «Высшая математика».

———————————————

Примеры.

Найти произведение матриц.

1) (1.110)

Для нахождения произведения умножаем строки первой матрицы на столбцы второй

2) (1.112)

Найдем элементы новой матрицы.

Записываем полученные значения в матрицу.

3) (1.114)

Согласно правилам — произведением будет матрица-вектор размерности . Вычислим ее элементы

Окончательно матрица примет вид

4) (1.115)

При вычислении произведения матриц-векторов получим квадратную матрицу размера. .

Простыми операциями умножения получили новую квадратную матрицу пятого порядка.

5) (1.116)

Результатом умножения в данном примере будет матрица которая содержит лиш один элемент.

На этом практическая часть урока закончена. Упражняйтесь в решении подобных примеров, ведь умножения — это одна из основных операций (не только в матрицах). В следующих статьях материал будет сложнее, поэтому начинайте знакомиться с матрицами с простого.

Заказать задачи по любым предметам можно здесь от 10 минут

Произведение матриц

Для того, чтобы найти произведение матриц нужно строки левой матрицы умножить на столбцы правой матрицы. $$begin{pmatrix} a_{11}&a_{12}&a_{13} \ *&*&* \ *&*&* end{pmatrix} times begin{pmatrix} b_{11}&*&* \ b_{21}&*&* \ b_{31}&*&* end{pmatrix} = begin{pmatrix} c_{11}&*&* \ *&*&* \ *&*&* end{pmatrix}$$

Умножение строки на столбец производим по правилу скалярного произведения. То есть находим сумму произведений соответствующих элементов. Например, при умножении первой строки на первый столбец получаем $$c_{11}=a_{11}b_{11}+a_{12}b_{21}+a_{13}b_{31}.$$

Обязательно перед умножением матриц необходимо убедиться, чтобы число столбцов левой матрицы совпадало с числом строк правой матрицы. Только в этом случае матрицы можно перемножать. В результате получается матрица, у которой число строк равняется количеству строк левой матрицы, а количество столбцов равно числу столбцов правой матрицы. $$ underbrace{A}_{n times p} times underbrace{B}_{p times m} = underbrace{C}_{ntimes m}$$

Важное замечание!
Умножение матриц не коммутативно, т.е. $AB neq BA$.

Пример 1
Найти произведение матриц $Atimes B$ $$A=begin{pmatrix} 2&1 \ -3&4 end{pmatrix}, B = begin{pmatrix} 1&-3 \ 2&0 end{pmatrix}.$$
Решение

Проверяем, что число столбцов матрицы $A$ равно числу строк матрицы $B$. Далее берем первую строчку левой матрицы и умножаем её на первый столбец второй матрицы.

$$A times B = begin{pmatrix} 2&1 \*&* end{pmatrix} times begin{pmatrix} 1&* \ 2&* end{pmatrix}= begin{pmatrix} 2cdot1+1cdot2 &* \*&* end{pmatrix} = begin{pmatrix} 4&* \*&* end{pmatrix}$$

Теперь умножаем первую строку левой матрицы на второй столбец правой матрицы. $$A times B = begin{pmatrix} 2&1 \*&* end{pmatrix} times begin{pmatrix} *&-3 \ *&0 end{pmatrix}= begin{pmatrix} *&2cdot(-3)+1cdot0 \*&* end{pmatrix}=begin{pmatrix} *&-6 \*&* end{pmatrix}$$

Далее вторую строчку левой матрицы и умножаем на первый столбец второй матрицы. $$A times B = begin{pmatrix} *&* \-3&4 end{pmatrix} times begin{pmatrix} 1&* \ 2&* end{pmatrix}= begin{pmatrix} *&* \(-3)cdot1+4cdot2&* end{pmatrix}=begin{pmatrix} *&* \5&* end{pmatrix}$$

И осталось умножить первую строку левой матрицы на второй столбец правой матрицы.

$$A times B = begin{pmatrix} *&* \-3&4 end{pmatrix} times begin{pmatrix} *&-3 \ *&0 end{pmatrix}= begin{pmatrix} *&* \ *&(-3)cdot(-3)+4cdot0 end{pmatrix}=begin{pmatrix} *&* \*&9 end{pmatrix}$$

Вот теперь можно составить полный ответ. $$Atimes B=begin{pmatrix} 2&1 \ -3&4 end{pmatrix} times begin{pmatrix} 1&-3 \ 2&0 end{pmatrix} = begin{pmatrix} 4&-6 \ 5&9 end{pmatrix}$$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$A times B = begin{pmatrix} 4&-6 \ 5&9 end{pmatrix}$$
Пример 2
Умножить матрицы $Atimes B$ $$A = begin{pmatrix} 2&3&0 \ 1&-1&2 end{pmatrix}, B = begin{pmatrix} 1&0 \ 2&-1 \ 1&-2 end{pmatrix}.$$
Решение

Убеждаемся, что число столбцов матрицы $A$ равно количеству строк матрицы $B$ для того, чтобы можно было выполнить умножение. Так как количество строк в $A$ равно двум, а количество столбцов в $B$ равно 2, то в результате должна получиться матрица с размерностью два на два. $$A times B = begin{pmatrix} 2&3&0 \ 1&-1&2 end{pmatrix} times begin{pmatrix} 1&0 \ 2&-1 \ 1&-2 end{pmatrix} = begin{pmatrix} *&* \ *&* end{pmatrix}$$

Умножаем первую строку левой матрицы на второй столбец правой матрицы. $$begin{pmatrix} 2&3&0 \ 1&-1&2 end{pmatrix} times begin{pmatrix} 1&0 \ 2&-1 \ 1&-2 end{pmatrix} = begin{pmatrix} 2cdot1+3cdot2+0cdot1&* \ *&* end{pmatrix} = begin{pmatrix} 8&* \*&* end{pmatrix}$$

Умножим первую строку левой матрицы на второй столбец правой матрицы. $$begin{pmatrix} 2&3&0 \ 1&-1&2 end{pmatrix} times begin{pmatrix} 1&0 \ 2&-1 \ 1&-2 end{pmatrix} = begin{pmatrix} 8&2cdot0+3cdot(-1)+0cdot(-2) \ *&* end{pmatrix} = begin{pmatrix} 8&-3 \*&* end{pmatrix}$$

Аналогично поступаем теперь со второй строкой левой матрицы. Умножаем её на первый столбец правой матрицы. $$begin{pmatrix} 2&3&0 \ 1&-1&2 end{pmatrix} times begin{pmatrix} 1&0 \ 2&-1 \ 1&-2 end{pmatrix} = begin{pmatrix} 8&-3 \ 1cdot1+(-1)cdot2+2cdot1&* end{pmatrix} = begin{pmatrix} 8&-3 \1&* end{pmatrix}$$

Умножим вторую строку левой матрицы на второй столбец правой матрицы.$$begin{pmatrix} 2&3&0 \ 1&-1&2 end{pmatrix} times begin{pmatrix} 1&0 \ 2&-1 \ 1&-2 end{pmatrix} = begin{pmatrix} 8&-3 \ 1&1cdot0+(-1)cdot(-1)+2cdot(-2) end{pmatrix} = begin{pmatrix} 8&-3 \1&-3 end{pmatrix}$$

Вот таким образом можно перемножить матрицы разной размерности.

Ответ
$$Atimes B = begin{pmatrix} 8&-3 \1&-3 end{pmatrix}$$
Пример 3
Найти произведение матриц $Atimes B$ $$A = begin{pmatrix} 2&3&0 \ -1&2&3 \ 1&-1&2 end{pmatrix}, B = begin{pmatrix} 1&0&2 \ 2&-1&-2 \ 1&-2&4 end{pmatrix}.$$
Решение

Умножаем первую строку левой матрицы на первый столбец правой матрицы. $$begin{pmatrix} 2&3&0 \ -1&2&3 \ 1&-1&2 end{pmatrix} times begin{pmatrix} 1&0&2 \ 2&-1&-2 \ 1&-2&4 end{pmatrix} = begin{pmatrix} 2cdot1+3cdot2+0cdot1 &*&* \*&*&* \ *&*&* end{pmatrix} = begin{pmatrix} 8&*&* \ *&*&* \ *&*&* end{pmatrix}$$

Перемножим первую строку матрицы $A$ со вторым столбцом матрицы $B$. $$begin{pmatrix} 2&3&0 \ -1&2&3 \ 1&-1&2 end{pmatrix} times begin{pmatrix} 1&0&2 \ 2&-1&-2 \ 1&-2&4 end{pmatrix} = begin{pmatrix} 8&2cdot0+3cdot(-1)+0cdot(-2)&* \*&*&* \ *&*&* end{pmatrix} = begin{pmatrix} 8&-3&* \ *&*&* \ *&*&* end{pmatrix}$$

Найдем произведение первой строки матрицы $A$ на третий столбец матрицы $B$. $$begin{pmatrix} 2&3&0 \ -1&2&3 \ 1&-1&2 end{pmatrix} times begin{pmatrix} 1&0&2 \ 2&-1&-2 \ 1&-2&4 end{pmatrix} = begin{pmatrix} 8&-3&2cdot2+3cdot(-2)+0cdot4 \*&*&* \ *&*&* end{pmatrix} = begin{pmatrix} 8&-3&-2 \ *&*&* \ *&*&* end{pmatrix}$$

Возьмем вторую строку левой матрицы и умножим на первый столбец правой матрицы. $$begin{pmatrix} 2&3&0 \ -1&2&3 \ 1&-1&2 end{pmatrix} times begin{pmatrix} 1&0&2 \ 2&-1&-2 \ 1&-2&4 end{pmatrix} = begin{pmatrix} 8&-3&-2 \(-1)cdot1+2cdot2+3cdot1&*&* \ *&*&* end{pmatrix} = begin{pmatrix} 8&-3&-2 \ 6&*&* \ *&*&* end{pmatrix}$$

Аналогично умножим вторую строчку на второй столбец. $$begin{pmatrix} 2&3&0 \ -1&2&3 \ 1&-1&2 end{pmatrix} times begin{pmatrix} 1&0&2 \ 2&-1&-2 \ 1&-2&4 end{pmatrix} = begin{pmatrix} 8&-3&-2 \ 6&(-1)cdot0+2cdot(-1)+3cdot(-2)&* \ *&*&* end{pmatrix} = begin{pmatrix} 8&-3&-2 \ 6&-8&* \ *&*&* end{pmatrix}$$

Таким же образом перемножим вторую строчку с третьим столбцом. $$begin{pmatrix} 2&3&0 \ -1&2&3 \ 1&-1&2 end{pmatrix} times begin{pmatrix} 1&0&2 \ 2&-1&-2 \ 1&-2&4 end{pmatrix} = begin{pmatrix} 8&-3&-2 \ 6&-8&(-1)cdot2+2cdot(-2)+3cdot4 \ *&*&* end{pmatrix} = begin{pmatrix} 8&-3&-2 \ 6&-8&6 \ *&*&* end{pmatrix}$$

Аналогично поступаем с третьей строкой левой матрицы, умножая её на три столбца правой матрицы. $$begin{pmatrix} 2&3&0 \ -1&2&3 \ 1&-1&2 end{pmatrix} times begin{pmatrix} 1&0&2 \ 2&-1&-2 \ 1&-2&4 end{pmatrix} = begin{pmatrix} 8&-3&-2 \ 6&-8&6 \ 1cdot1+(-1)cdot2+2cdot1&*&* end{pmatrix} = begin{pmatrix} 8&-3&-2 \ 6&-8&6 \ 1&*&* end{pmatrix}$$

$$begin{pmatrix} 2&3&0 \ -1&2&3 \ 1&-1&2 end{pmatrix} times begin{pmatrix} 1&0&2 \ 2&-1&-2 \ 1&-2&4 end{pmatrix} = begin{pmatrix} 8&-3&-2 \ 6&-8&6 \ 1&1cdot0+(-1)cdot(-1)+2cdot(-2)&* end{pmatrix} = begin{pmatrix} 8&-3&-2 \ 6&-8&6 \ 1&-3&* end{pmatrix}$$

$$begin{pmatrix} 2&3&0 \ -1&2&3 \ 1&-1&2 end{pmatrix} times begin{pmatrix} 1&0&2 \ 2&-1&-2 \ 1&-2&4 end{pmatrix} = begin{pmatrix} 8&-3&-2 \ 6&-8&6 \ 1&-3&1cdot2+(-1)cdot(-2)+2cdot4 end{pmatrix} = begin{pmatrix} 8&-3&-2 \ 6&-8&6 \ 1&-3&12 end{pmatrix}$$

Ответ
$$Atimes B = begin{pmatrix} 8&-3&-2 \ 6&-8&6 \ 1&-3&12 end{pmatrix}$$
Пример 4
Найти произведение матриц $Atimes B$ $$A = begin{pmatrix} 2&3&0 \ -1&2&3 \ 1&-1&2 end{pmatrix}, B = begin{pmatrix} 1&0&2 \ 1&-2&4 end{pmatrix}.$$
Решение
Количество столбцов в матрице $A$ равно трём и не совпадает с числом строк в матрице $B$, поэтому нельзя выполнить произведение $A times B$, но вот наоборот произведение $B times A$ можно сделать, так как количество столбцов в матрице $B$ равно количеству строк в $A$. Но так как в условии требуется вариант $Atimes B$, то ответ прост: нельзя выполнить умножение.
Ответ
Матрицы нельзя перемножить

hello_html_m6c0be56f.gifhello_html_183d755d.gifhello_html_m2a7690f7.gifhello_html_m2a7690f7.gifhello_html_m2a7690f7.gifhello_html_m2a7690f7.gifhello_html_m2a7690f7.gifhello_html_m2a7690f7.gifhello_html_m2a7690f7.gifhello_html_m2a7690f7.gifhello_html_m2a7690f7.gifhello_html_m2a7690f7.gifhello_html_m2a7690f7.gifhello_html_m2a7690f7.gifhello_html_m2a7690f7.gifhello_html_m2a7690f7.gifhello_html_m2a7690f7.gifhello_html_m2a7690f7.gifhello_html_8b178ef.gifДЕПАРТАМЕНТ ОБРАЗОВАНИЯ И МОЛОДЁЖНОЙ

ПОЛИТИКИ ХМАО-ЮГРЫ

БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ

СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ХМАО-ЮГРЫ

НЯГАНСКИЙ ТЕХНОЛОГИЧЕСКИЙ КОЛЛЕДЖ

Методическая разработка

Раздел «Элементы линейной алгебры»

Дисциплина «Элементы высшей математики»

Специальность «Компьютерные сети»

П.М.Ажулаева

Нягань 2014г

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ И МОЛОДЁЖНОЙ ПОЛИТИКИ ХМАО-ЮГРЫ

БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ

СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ХМАО-ЮГРЫ

НЯГАНСКИЙ ПРОФЕССИОНАЛЬНЫЙ КОЛЛЕДЖ

Методическая разработка

Раздел «Линейная алгебра»

Учебная дисциплина: «Элементы высшей математики»

П.М.Ажулаева

преподаватель математики

Нягань 2014г

Аннотация

В данной работе рассмотрены темы раздела №1 «Элементы линейной алгебры»: «Матрицы. Определители. Системы линейных уравнений. Методы решения систем линейных уравнений» из рабочей программы учебной дисциплины «Элементы высшей математики».

В предлагаемой методической разработке рассматриваются основные понятия теории данного раздела и подробно рассмотрены задачи, аналогичные тем, которые даются студентам на практических занятиях и в контрольных работах и для выполнения самостоятельных работ. Данная работа поможет преподавателю в полной мере донести материал в лекционной форме и практической работы, а студенту самостоятельно изучить пропущенный материал и ликвидировать пробел знаний по данной теме. В данной работе сделана попытка соединить учебный материал, руководство к решению задач и выполнение практических, контрольных заданий.

Перед выполнением каждого задания предлагаем ознакомиться с основными вопросами теории и рассмотреть образцы решения. Перечисленные ниже вопросы по теме являются основными при защите выполненных работ.

Данная тема изучается по дисциплине «Элементы высшей математики» специальности «Компьютерные сети».

Данная работа предназначена также и для студентов 2 курса других специальностей по дисциплине «Математика» («Сварочное производство», «Техническая эксплуатация и обслуживание электрического и электромеханического оборудования»).

Содержание

  1. Аннотация………………………………………2

  2. Введение……………………………………….. 4

  3. Основная часть…………………………………6 — 41

— матрицы……………………………………….7

— действия над матрицами……………………..9

— действия над матрицами (практическая)……13

— определители………………………………….16

— миноры…………………………………………19

— обратная матрица……………………………..24

— ранг…………………………………………….27

— системы линейных уравнений……………….29

— решение систем линейных уравнений………36

— контрольная работа…………………………..39

  1. Заключение…………………………………….. 42

  2. Литература………………………………………43

  3. Приложения……………………………………..44

Введение

Вечные истины значимы совершенно независимо от какого – то ни было фактического состояния действительности, какова бы она ни была.

(Лейбниц)

Реальный образовательный процесс проходит в динамике и в современной дидактике понимается как взаимодействие деятельности и преподавателей, и обучаемых, направленное на достижение учебных целей, задач обучения, воспитания и развития, на формирование компетенций.

Для специалиста важно понимать роль и место математики в жизни современного общества. Для этого студент должен усвоить сущность математической науки, познакомиться с ее языком и основными методами. Это поможет ему самостоятельно читать ту литературу по специальности, в которой используются математические методы и модели, заниматься повышением своей профессиональной подготовки.

Математика играет важную роль в естественно – научных, инженерно – технических и гуманитарных исследованиях. Она стала для многих отраслей знаний не только орудием количественного расчета, но также методом точного исследования и средством четкой формулировки понятий и проблем. Без современной математики с ее развитым логическим и вычислительным аппаратом был бы невозможен прогресс в различных областях человеческой деятельности.

Математика является не только мощным средством решения прикладных задач и универсальным языком науки, но также и элементом общей культуры. Поэтому математическое образование следует рассматривать как важнейшую составляющую в системе фундаментальной подготовки современного специалиста.

Учебная дисциплина «Элементы высшей математики» предназначена для реализации государственных требований к минимуму содержания и уровню подготовки выпускников по специальности среднего профессионального образования «Компьютерные сети». Учебная дисциплина «Элементы высшей математики» является естественнонаучной, формирующей базовые знания для освоения профессиональных и специальных дисциплин.

Предлагаемая работа написана в соответствии с требованиями государственных образовательных стандартов в области математики. Она соответствует Примерной программе дисциплины «Элементы высшей математики» и включает темы: «Матрицы. Определители. Системы линейных уравнений. Методы решения систем линейных уравнений»

Для студентов учебник и конспекты являются основным источником учебной информации, так как многие студенты еще и работают, или пропустили занятия по каким – либо причинам. Именно таким студентам в первую очередь адресована данная работа.

Умение логически мыслить и оперировать абстрактными понятиями, понимать место точных формулировок и уметь, где необходимо, обходиться описательными определениями, отличать тривиальные и частные модели от глубоких и общих – вот основные цели, преследуемые при изучении дисциплины математика.

В процессе изучения математики студент должен:

— научиться использовать математику как метод мышления, как язык, как средство формулирования и организации понятий;

— уметь формулировать, формализовать и решать с помощью компьютера основные математические задачи;

— уметь строить простейшие математические модели и ориентироваться в возможностях их реализации на вычислительной технике.

Изучение дисциплины «Элементы высшей математики» направлена на достижение следующих целей:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, для продолжения образования и самообразования;

  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения смежных естественнонаучных дисциплин на базовом уровне и дисциплин профессионального цикла;

  • воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.

Теория без практики мертва или бесплодна,

практика без теории невозможна или пагубна.

Для теории нужны знания, для практики,

сверх всего того, и умение.

А.Н. Крылов

Занятие (лекция)

Тема: Матрицы

План:

  1. Матрицы. Основные понятия.

  2. Действия над матрицами.

    1. Сложение.

    2. Умножение на число

    3. Произведение матриц.

Цели занятия:

На занятии вы узнаете

  • Понятие матрицы, квадратной матрицы, треугольной матрицы, единичной матрицы, нулевой матрицы, транспонированной матрицы, противоположной матрицы, элементы матрицы, главной и побочной диагонали,

  • Сложения матриц, умножение матрицы на число, произведение матриц,

  • Свойства операции сложения матриц и умножения матрицы на число, произведения матриц,

Порядок работы на занятии:

  1. Прочитать текст лекции или прослушать лекцию преподавателя.

  2. Законспектировать лекцию.

  3. Ответить на контрольные вопросы, не заглядывая в конспект.

  4. Проверьте свои ответы по конспекту.

  5. Если ответы ошибочны, еще раз прочитайте лекцию и ответьте на контрольные вопросы. Будьте готовы к устному опросу и к применению знаний на практических занятиях.

1. Матрицы. Основные понятия

Алгебра – одна из составных частей современной математики. Название алгебра происходит от названия книги арабского математика Мухаммеда аль Хорезми «Ал-д жабр…»

Основной задачей алгебры было решение алгебраических уравнений, а так же систем уравнений и как особо важный случай, систем линейных уравнений. Для решения уравнений были введены понятия матрицы и определители, которые впоследствии стали самостоятельными объектами изучения. Указанный материал впоследствии стал относиться к высшей алгебре.

Матрицей называется множество чисел, образующих прямоугольную таблицу, которая содержит m строк и n столбцов.

Матрица записывается в виде hello_html_21bdfd6c.gif или, сокращенно А = hello_html_3bba6793.gif, где i=1, 2, 3,…,m означает номер строки, j=1,2,3,…,n – номер столбца.

Матрицу А называют матрицей размера m×n и пишут hello_html_m57f236c6.gif. Числа hello_html_m64107974.gif, составляющие матрицу, называются ее элементами.

Матрицы равны между собой, если равны соответствующие элементы этих матриц, т.е. А=В, если hello_html_m64107974.gif=hello_html_6b88549d.gif, где i=1,2,3,…,m, j=1,2,3,…,n

Матрица, у которой число строк равно числу столбцов, называется квадратной. Квадратную матрицу размера hello_html_m70e6932c.gif называют матрицей n-го порядка.

Рассмотрим квадратную матрицу порядка n: hello_html_m5da9f721.gif

Элементы, стоящие на диагонали, идущей из левого верхнего угла hello_html_m7316b3cf.gif, образуют главную диагональ, а элементы, стоящие на диагонали, идущей из правого верхнего угла hello_html_mcbe1696.gif, образуют побочную диагональ.

Пример. hello_html_73c65149.gif — квадратная матрица 3-го порядка.

Квадратная матрица, у которой все элементы, кроме элементов главной диагонали, равны нулю, называется диагональной.

Пример. А=hello_html_5d402150.gif — диагональная матрица n-го порядка.

Диагональная матрица, у которой каждый элемент главной диагонали равен единице, называется единичной. Обозначается буквой Е.

Пример. hello_html_66a056b6.gif — единичная матрица 3-го порядка.

Матрица, все элементы которой равны нулю, называется нулевой.

Нулевая матрица обозначается буквой О. Имеет вид

О =hello_html_74548278.gif

Матрица, содержащая один столбец или одну строку, называется вектором (или вектор-столбец, или вектор-строка соответственно).

А=hello_html_m29cd2f6c.gif В=hello_html_m6279a801.gif

Квадратная матрица называется треугольной, если все элементы, расположенные по одну сторону от главной диагонали, равны нулю.

Матрица, полученная из данной заменой каждой ее строки столбцом с тем же номером, называется матрицей транспонированной к данной. Обозначается hello_html_49c3aeb2.gif. Транспонированная матрица обладает следующим свойством:hello_html_md290ee1.gif.

Так, если hello_html_m6ba3fb6e.gif, то hello_html_m365411f8.gif

2. Действия над матрицами

2.1. Сложение матриц

Операция сложения вводится только для матриц одинаковых размеров.

Суммой двух матриц А = hello_html_3bba6793.gif и В = hello_html_m3c22717a.gif называется матрица С = hello_html_mb0b6107.gif элементы, которой равны сумме соответствующих элементов матриц А и В, т.е hello_html_969a00e.gif, где i=1,2,3,…,m, j=1,2,3,…,n.

Пример 1. hello_html_57b40e62.gif

Аналогично определяется разность матриц.

2.2. Умножение матрицы на число

Произведением матрицы А на число k называется матрица kA, каждый элемент которой равен khello_html_m64107974.gif , i=1,2,3,…,m, j=1,2,3,…,n. т.е.

если А=hello_html_5f56b103.gif, то kA=hello_html_mbf27d88.gif

Умножение матрицы на число сводится к умножению на это число всех элементов матрицы.

Пример 2. hello_html_28046bd0.gif, k=2; kA=hello_html_m7ea89ecd.gif

Матрица –А =(-1)∙А называется противоположной матрице А.

Разность матриц А-В можно определить так: А-В=А+(-В).

Операция сложения матриц и умножения матрицы на число обладают следующими свойствами:

  1. переместительный закон сложения А+В=В+А,

  2. сочетательный закон сложения (А+В)+С=А+(В+С),

  3. А+О=А;

  4. для любой матрицы А существует матрица –А, такая, что А+(-А)=0, т.е. матрица, противоположная А;

  5. 1∙А=А;

  6. α∙(А+В)=αА+αВ;

  7. (α+β)∙А=αА+βА;

  8. α∙(βА)=(αβ)∙А.

где А, В, С — либо квадратные матрицы одного порядка n, либо прямоугольные матрицы одно размера m×n, а α и β – числа.

2.3. Произведение матриц

Операция умножения матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй матрицы.

Произведением матрицы hello_html_dc43f2f.gif на матрицу hello_html_m341837d0.gif называется матрица hello_html_8c849d8.gif такая, что hello_html_175c9c71.gif, где hello_html_m30a7c8d0.gif, hello_html_mc4f6e24.gif

Получение элемента hello_html_m56793b03.gif схематично изображается так:

hello_html_7daa804f.gifhello_html_m74c666da.gif

j

Вообще, чтобы получить элемент, стоящий на пересечении i-ой строки и j-го столбца матрицы произведения, нужно все элементы i-ой строки (hello_html_m13156fc8.gif,hello_html_m58824695.gif, …, hello_html_7dbf68d.gif) матрицы А умножить на соответствующие элементы j-го столбца (hello_html_m49fbe97e.gif,hello_html_56e1decd.gif, …, hello_html_m4be55395.gif) матрицы В и полученные произведения сложить.

Если матрицы А и В произвольного размера, то произведения АВ и ВА не всегда существуют.

Рассмотрим умножение квадратных матриц второго порядка.

Пусть hello_html_m46dc21e6.gif.

Произведением этих матриц называется матрица hello_html_m53cd8a96.gif

чтобы найти элемент hello_html_m450facc1.gifпервой строки и первого столбца матрицы С, нужно каждый элемент первой строки матрицы А (т.е. hello_html_7f9bff80.gif и hello_html_77f81eb6.gif) умножить на соответствующий элемент первого столбца матрицы В (т.е. hello_html_m72e92c2.gif и hello_html_49c96f94.gif) и полученные произведения сложить hello_html_m251f1a33.gif;

чтобы получить элемент hello_html_56232dfd.gif первой строки и второго столбца матрицы С, нужно умножить все элементы первой строки (hello_html_7f9bff80.gif и hello_html_77f81eb6.gif) на соответствующие элементы второго столбца (т.е. hello_html_140213fc.gif и hello_html_56de0ec4.gif) и полученные произведения сложить: hello_html_m2548e67d.gif

аналогично находится элементы hello_html_be85195.gif и hello_html_14ff30c5.gif.

Если матрицы А и В квадратные одного размера, то произведения АВ и ВА всегда существуют. Легко доказать, что А∙Е=Е∙А=А, где А-квадратная матрица, Е- единичная матрица того же размера.

Пример 3. Найти произведение матриц А и В, если

hello_html_m2b37d6e2.gif, hello_html_m186d8f87.gif

Решение. Так как матрица hello_html_m76e0ff7a.gif и матрица hello_html_1da48cb8.gif, то матрица произведения hello_html_4ae26fe7.gifи содержит 9 элементов. Найдем каждый элемент матрицы-произведения:

hello_html_m244d95d0.gif

hello_html_1e38495.gif

hello_html_m781af7a9.gif

hello_html_31ec505b.gif

hello_html_m5f08aa19.gif

hello_html_m3179e88e.gif

hello_html_7a6d5f3d.gif

hello_html_4d171b1c.gif

hello_html_m3dd9c962.gif

hello_html_m71be6669.gif

Пример 3. Найти произведение матриц А и В, если

hello_html_611dc2cc.gifhello_html_2dc274a4.gif

Решение. Произведение матриц А∙В не определенно, так как число столбцов матрицы А (3) не совпадает с числом строк матрицы В (2). При этом определенно произведение В∙А. Так как матрица hello_html_33cf7178.gif и матрица hello_html_mfb3905f.gif, то матрица произведения hello_html_45e5ac1f.gifи содержит 6 элементов.

В∙А=hello_html_m7c66776d.gif

Умножение матриц обладают следующими свойствами:

  1. А∙(В∙С)= (А∙В)∙С;

  2. А∙(В+С)=АВ+АС;

  3. (А+В)∙С=АС+ВС;

  4. α(АВ)=(αА)В.

  5. hello_html_3e604136.gif

Контрольные вопросы

  1. Что называется матрицей?

  2. Что называется матрицей – строкой? Матрицей – столбцом?

  3. Какие матрицы называются прямоугольными? Квадратными?

  4. Какие матрицы называются равными?

  5. Что называется главной диагональю матрицы?

  6. Какая матрица называется диагональной?

  7. Какая матрица называется единичной?

  8. Какая матрица называется треугольной?

  9. Что значит «Транспонировать» матрицу?

  10. Что называется суммой матриц?

  11. Что называется произведением матрицы на число?

  12. Как найти произведение двух матриц?

  13. В чем состоит обязательное условие существование произведения матриц?

Какими свойствами обладает произведение матриц

Занятие (практическое)

Тема: Действия над матрицами

Цели занятия:

К занятию надо знать.

  • Понятие матрицы, квадратной матрицы, прямоугольной матрицы.

  • Условия сложения и произведения матриц.

  • Сложения матриц, умножение матрицы на число, произведение матриц.

  • Свойства операции сложения матриц, умножения матриц на число, произведения матриц,

На занятии надо научиться:

  • Складывать матрицы.

  • Умножать матрицы на число.

  • Вычислять произведения двух матриц.

Порядок работы на занятии:

  1. Повторить условия сложения и произведения матриц.

  2. Повторить сложения матриц, умножение матрицы на число, произведение матриц.

  3. Рассмотреть образец решения (пример 1, лекция «действия над матрицами»).

  4. Выполнить задание 1.

  5. Рассмотреть образец решения (пример 2, лекция «действия над матрицами»).

  6. Выполнить задание 2, 3, 4, 5, 6 (домашнее задание не менее 2 примеров указывает преподаватель)

  7. Рассмотреть образец решения (пример 3, лекция «действия над матрицами»).

  8. Выполнить задание 7, 8, 9 (домашнее задание не менее 4 примеров указывает преподаватель)

  9. Выполненные задания покажите преподавателю. Возможен устный опрос.

Задание 1. Сложить матрицы А и В, если:

а) hello_html_32e8f4be.gif, hello_html_m3d03a90f.gif

б)hello_html_cedf309.gif,hello_html_m658256b5.gif

в) hello_html_m2785cbe6.gif, hello_html_645e7535.gif

Задание 2. Умножить матрицу hello_html_m6c09c68f.gif на число k=3.

Задание 3. Найти матрицу, противоположную матрице

А=hello_html_m2cce01af.gif

Задание 4. Найти линейную комбинацию 3А-2В, если

hello_html_6c71be30.gif, hello_html_40010203.gif

Задание 5. Вычислить линейную комбинацию матриц 2А-В, если

hello_html_m48139e94.gif, hello_html_m343ae339.gif

Задание 6. Вычислить линейную комбинацию матриц 2А+3В-С, если

hello_html_m73a34b4b.gif, hello_html_6e352521.gif, hello_html_m18666507.gif

Задание 7. Найти произведение матриц АВ, если:

а) hello_html_3a00f873.gif, hello_html_55c37b0a.gif

б) hello_html_198b02e5.gif, hello_html_m422376f9.gif

в)hello_html_m27c0d9c3.gif, hello_html_m57de96c7.gif

г) hello_html_3c5450a5.gif, hello_html_m5ace44b0.gif

д)hello_html_3697fefa.gif,hello_html_ma08ea9a.gif

Задание 8. Вычислить а) hello_html_6dac2580.gif, б) hello_html_m273f59d8.gif, где

hello_html_m402e9235.gif, hello_html_6cd9b1a7.gif

Задание 9. Найти hello_html_1bd5bd94.gif, если hello_html_61b840c3.gif, hello_html_46e232fd.gif

Занятие (лекция)

Тема: Определители

План:

  1. Определители. Основные понятия.

  2. Основные свойства определителей.

  3. Миноры и алгебраические дополнения элементов определителя.

Цели занятия:

На занятии вы узнаете

  • Понятие определителя 2-го порядка, определителя 3-го порядка, минора, алгебраического дополнения.

  • Формулировки свойств определителя.

  • Формулировку теоремы «о разложении определителя по элементам строки или столбца».

  • Схему вычисления определителя 2-го порядка.

  • Формулировку правило Саррюса (схема треугольников).

Порядок работы на занятии:

  1. Прочитать текст лекции или прослушать лекцию преподавателя.

  2. Законспектировать лекцию.

  3. Ответить на контрольные вопросы, не заглядывая в конспект.

  4. Проверьте свои ответы по конспекту.

  5. Если ответы ошибочны, еще раз прочитайте лекцию и ответьте на контрольные вопросы. Будьте готовы к устному опросу и к применению знаний на практических занятиях.

1. Определители. Основные понятия.

Определитель – это число, которое по специальным правилам вычисляется для каждой квадратной матрицы

Пусть дана квадратная матрица второго порядка: hello_html_2352b1e6.gif

Определителем (или детерминантом) второго порядка называется число hello_html_m610f8c58.gif. Определитель второго порядка записывается так:

detA=hello_html_m7fa1101b.gif=hello_html_m610f8c58.gif— определитель второго порядка.

Определитель второго порядка равен разности попарных произведений элементов главной и побочной диагонали.

Определитель квадратной матрицы порядка n можно обозначить также Δ или│A│.

Вычисление определителя 2-го порядка иллюстрируется схемой: hello_html_5458ad20.gif

Пример 1. Найти определители матриц:

  1. hello_html_m6528ae75.gif; б) hello_html_m2deb9b3b.gif

Решение.

  1. hello_html_m6c720ce7.gif= 2∙6- (-3)∙5=27

  2. hello_html_7e351de5.gif

Пусть дана квадратная матрица третьего порядка: hello_html_73c65149.gif

Определителем 3-го порядка, соответствующим данной матрице, называется число hello_html_609ca851.gif

Определитель третьего порядка записывается так:

hello_html_77d77512.gifhello_html_609ca851.gif

Чтобы запомнить, какие произведения в правой части берутся со знаком «+», а какие со знаком « – », полезно использовать следующее правило треугольников (правилом Саррюса), которое символически можно записать так:

hello_html_m5731db32.gifправило треугольников (правилом Саррюса)

Пример 2. Вычислить определитель матрицы hello_html_67c0a268.gif

Решение.

detA=5∙1∙(-3)+3∙0∙1+(-2)∙(-4)∙6-1∙1∙6-5∙(-4)∙0-3∙(-2)∙(-3)=-15+0+48-6-0-18=9

2. Основные свойства определителей

  1. «Равноправность строк и столбцов». Определитель матрицы не изменится, если его строки заменить столбцами, и наоборот (т.е. транспонировать)

  2. При перестановке двух строк (или столбцов) определитель изменит свой знак на противоположный: hello_html_m2d7f06e7.gif

  3. Определитель с двумя одинаковыми строками или столбцами равен нулю.

hello_html_6cbc3e7f.gif

  1. Общий множитель всех элементов строки (или столбца) можно вывести за знак определителя: hello_html_35c5bf75.gif

  2. Если все элементы двух строк (столбцов) определителя пропорциональны, то определитель равен нулю.

  3. Если к какой-либо строке (или столбцу) определителя прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и то же число, то определитель не изменит своей величины: hello_html_16d9c4a3.gif

  4. Если элементы какой-либо строки (столбца) определителя представляют собой сумму двух слагаемых, то определитель может быть разложен на сумму двух соответствующих определителей: hello_html_5e567939.gif

  5. Треугольный определитель, у которого все элементы

лежащие выше (или ниже) главной диагонали, — нули, равен произведению элементов главной диагонали: hello_html_m1abba1e0.gifhello_html_m31727acd.gif

3. Миноры и алгебраические дополнения элементов определителя

Минором hello_html_240e6d08.gif некоторого элемента hello_html_m64107974.gif определителя n-го порядка называется определитель (n-1) — го порядка, полученный из исходного путем вычеркивания строки и столбца, на пересечении которых находится выбранный элемент.

Например, Минор М12 , соответствующий элементу hello_html_77f81eb6.gif определителя hello_html_1006060c.gif,

получается, если вычеркнуть из определителя D первую строку и второй столбец, т.е.

hello_html_6a9439e7.gif.

Пример 3. Записать все миноры определителя hello_html_66ebbb8d.gif

Решение.

hello_html_67954e0e.gif=-57, hello_html_m340d3443.gif=42, hello_html_m689a2c19.gif=63,

hello_html_m3cf5d482.gif=-21, hello_html_2635f604.gif=24, hello_html_4352b964.gif=9,

hello_html_76618b37.gif=-15, hello_html_78756e5c.gif=-6, hello_html_m2adc1aea.gif= -9

Алгебраическим дополнением элемента hello_html_m64107974.gif определителя называется минорhello_html_240e6d08.gif этого элемента, взятый со знаком hello_html_m38b0d5a3.gif. Алгебраическое дополнение элемента hello_html_m64107974.gif принято обозначать hello_html_m1407d356.gif.

Таким образом, hello_html_m7c982e21.gif.

hello_html_m38b0d5a3.gif— определитель знака, если (i+j) – четное число, то знак «+»

если (i+j) — нечетное число, то знак « — »

Знаки алгебраического дополнения Аij: hello_html_6e3ab47b.gif

Пример 4. Найти алгебраические дополнения элементов hello_html_23aed26c.gif определителя

hello_html_66ebbb8d.gif

Решение.

hello_html_1294e082.gif

hello_html_8c938b3.gif

hello_html_m2ffd9dff.gif

Теорема. «О разложении определителя по элементам строки или столбца». Сумма произведений элементов любой строки (или столбца) определителя D на их алгебраические дополнения равна этому определителю, т.е.

hello_html_m92e8f19.gifили hello_html_m54f2b46.gif.

Эти соотношения называются разложением определителя по элементам i-ой строки или j-го столбца.

Для разложения определителя обычно выбирают тот ряд, где есть нулевые элементы, т.к. соответствующие им слагаемые в разложении будут равны нулю.

Пример 5. Определитель hello_html_66ebbb8d.gif разложить:

  1. по элементам второй строки;

  2. по элементам первого столбца.

Решение.

1. hello_html_1602d958.gif

2. hello_html_5d28653b.gif

Если определитель имеет четвертый или более высокий порядок, то его также можно разложить по элементам строки или столбца.

Пример 6. Вычислить определитель матрицы hello_html_3baea5b3.gif

Решение. Разложим определитель по элементам 1-го столбца.

hello_html_m73f0629e.gif

Перечислим различные способы вычисления определителей.

  1. Определитель можно вычислить, используя непосредственно его определение. Этим способом удобно находить определители 2-го и 3-го порядков (треугольник Саррюса), а для определителя более высокого порядка применим следующий способ.

  2. Определитель можно вычислить с помощью его разложения по элементам строки или столбца.

  3. Определитель можно вычислить способом приведения к треугольному виду. Этот способ основан на том, что в силу свойства 8 треугольный определитель равен произведению элементов главной диагонали.

Чтобы получить треугольный определитель, нужно используя свойство 6, к какой-либо строке (или столбцу) заданного определителя прибавлять соответствующие элементы другой стоки (или столбца), умноженные на одно и тоже число, до тех пор пока не придем к определителю треугольного вида.

Контрольные вопросы

  1. Что называется определителем матрицы?

  2. Как вычислить определитель третьего порядка по схеме треугольников?

  3. Что называется минором?

  4. Что называется алгебраическим дополнением элемента определителя?

  5. Как разложить определитель по элементам столбца или строки?

  6. Какие способы вычисления определителя вам известны?

  7. Перечислите свойства определителей.

Занятие (практическое)

Тема: Вычисление определителя n-го порядка

Цели занятия:

К занятию надо знать.

  • Понятие определителя 2-го, 3-го порядка, минора, алгебраического дополнения.

  • Формулировку теоремы «о разложении определителя по элементам строки или столбца».

  • Схему вычисления определителя 2-го порядка.

  • Формулировку правила Саррюса.

На занятии надо научиться:

  • Находить определитель 2-го порядка.

  • Находить определитель 3-го порядка.

  • Находить определитель 4-го порядка.

Порядок работы на занятии:

  1. Повторить понятие определителя 2-го и 3-го порядка, минора, алгебраического дополнения.

  2. Повторить схему вычисления определителя 2-го порядка, правило Саррюса.

  3. Рассмотреть образец решения (пример 1, лекция «основные понятия»).

  4. Выполнить задание 1.

  5. Рассмотреть образец решения (пример 2, лекция «основные понятия»).

  6. Выполнить задание 2 (домашнее задание не менее 2 примеров указывает преподаватель).

  7. Рассмотреть образцы решения (пример 3, 4, 5, 6, лекция «Миноры и алгебраические дополнения элементов определителя»).

  8. Выполнить задание 3, 4 (домашнее задание не менее 2 примеров указывает преподаватель)

  9. Выполненные задания покажите преподавателю. Возможен устный опрос.

Задание 1. Вычислить определители 2-го порядка:

А) hello_html_m74f04739.gif

Б) hello_html_7a7f790e.gif

В) hello_html_m41755701.gif

Г) hello_html_378ef284.gif

Задание 2. Вычислить определители 3-го порядка:

А) hello_html_m50d7a086.gif

Б) hello_html_1c01a5ba.gif

В) hello_html_m57ba986b.gif

Г) hello_html_6d51a792.gif

Задание 3. Вычислить определители 4-го порядка:

А) hello_html_3264a3cf.gif

Б) hello_html_4f7dcfc8.gif

В) hello_html_568281df.gif

Г) hello_html_m458ec904.gif

Задание 4. Решить уравнения:

А) hello_html_68991309.gif В) hello_html_m4f921318.gif

Занятие (лекция)

Тема: Обратная матрица. Ранг матрицы

План:

  1. Обратная матрица.

  2. Ранг матрицы.

Цели занятия:

На занятии вы узнаете

  • Понятие обратной матрицы, ранга матрицы.

  • Правило вычисления обратных матриц второго и третьего порядков.

  • Свойства обратной матрицы.

Порядок работы на занятии:

  1. Прочитать текст лекции или прослушать лекцию преподавателя.

  2. Законспектировать лекцию.

  3. Ответить на контрольные вопросы, не заглядывая в конспект.

  4. Проверьте свои ответы по конспекту.

  5. Если ответы ошибочны, еще раз прочитайте лекцию и ответьте на контрольные вопросы. Будьте готовы к устному опросу и к применению знаний на практических занятиях.

1. Обратная матрица.

Пусть А – квадратная матрица n-го порядка hello_html_m750e098f.gif

Квадратная матрица А-1 порядка n называется обратной матрицей для данной матрицы A, если hello_html_m343c5574.gif, где − E единичная матрица.

Квадратная матрица А называется вырожденной, если ее определитель detA равен 0 т.е. detA=0. В противном случае (detA≠0) матрица А называется невырожденной.

Обратная матрица hello_html_7aade5f8.gif имеет те же размеры, что и матрица А.

Теорема. Всякая невырожденная матрица А имеет обратную матрицу A-1, определяемую формулой hello_html_6a995740.gifhello_html_3994ad3f.gif

где A11, A12, …, Ann есть алгебраические дополнения соответствующих элементов a11, a12,…, ann матрицы А.

Правило вычисления обратных матриц n-го порядка

  1. Находят определитель матрицы А т.е. detA.

  2. Находят алгебраические дополнения всех элементов матрицы А.

  3. Умножают полученную транспонированную матрицу на hello_html_m5710f9bb.gif.

hello_html_6a995740.gifhello_html_3994ad3f.gif

Нахождение обратной матрицы имеет большое значение при решении систем линейных уравнений и в вычислительных методах линейного программирования.

Свойства обратной матрицы.

  1. hello_html_m50d0e1c.gif;

  2. hello_html_3cf7b1f8.gif;

  3. hello_html_13004385.gif.

Пример 1. Дана матрица А = hello_html_4e2d0511.gif, найти А-1.

Решение.

  1. det A = 4 — 6 = -2.

  2. А11=4; А12= -3; А21= -2; А22=1

  3. Таким образом, А-1=hello_html_e1b305c.gifhello_html_5b7e11b0.gif=hello_html_m4de6ebe3.gif

Пример 2. Найти матрицу А-1, если hello_html_m7dbe550.gif

Решение.

  1. Вычислим определитель матрицы А (по правилу треугольников):

hello_html_m5731db32.gif

hello_html_501d049e.gif, так как определитель det=5≠0, то матрица А невырожденная и имеет обратную матрицу А-1.

  1. Вычислим алгебраические дополнения всех элементов

матрицы А по формуле hello_html_3dfe3ccf.gif.

Знаки алгебраического дополнения Аij: hello_html_6e3ab47b.gif

hello_html_326fec47.gif

hello_html_m186c864b.gifhello_html_6a40f9a.gif

hello_html_129f9f6e.gifhello_html_m2f377c56.gifhello_html_m64359e11.gifhello_html_m6d7e7ea2.gifhello_html_31787d8c.gifhello_html_m2d761bf5.gif

  1. Подставляя найденные значения в формулу для А-1 получим:

2. Ранг матрицы

Рассмотрим матрицу А размера hello_html_m3f7fe6c0.gif. hello_html_m5986e793.gif. Выделим в ней k строк и k столбцов (hello_html_m2b578ebe.gif). Из элементов, стоящих на пересечении выделенных строк и столбцов, составим определитель k-го порядка. Все такие определители называются минорами этой матрицы.

Наибольший из порядков миноров данной матрицы, отличных от нуля, называется рангом матрицы. Обозначается r, r(A), rangA.

Очевидно, что hello_html_m7a4a3c83.gif, где hello_html_m61e74599.gif — меньшее из чисел m и n.

Минор, порядок которого определяет ранг матрицы, называется базисным.

У матрицы может быть несколько базисных миноров.

Пример 1. Дана матрица hello_html_163cd6fe.gif. Определить ее ранг.

Решение. Имеем hello_html_1f86d40.gif, hello_html_mc09adb6.gif, hello_html_m25aa195.gif.

Минор 4-го порядка составить нельзя.

Ответ: rangA=3.

Матрицы, имеющие одинаковый ранг, называются эквивалентными. Эквивалентность матриц обозначается знаком ~ между ними.

Записывается А~В.

Надо отметить, что равные матрицы и эквивалентные матрицы — понятия совершенно различные.

Отметим свойства ранга матрицы:

  1. При транспонировании матрицы ее ранг не меняется.

  2. Если вычеркнуть из матрицы нулевой ряд, то ранг матрицы не изменится.

  3. Ранг матрицы не изменится при элементарных преобразованиях матрицы.

Элементарными преобразованиями называются такие преобразования, при которых миноры матрицы либо не меняют своей величины, либо, меняя величину, не обращаются в нуль.

Элементарные преобразования матриц позволяют:

1. Переставлять местами между собой строки (столбцы).

2. Прибавлять к какой-либо строке (столбцу) другую строку (столбец), умноженную на любое число.

3. Умножать строку (столбец) на число, отличное от нуля.

4. Вычеркивать строки (столбцы), состоящие из одних нулей.

Пример 2. Определить ранг матрицы.

hello_html_82b7a00.gifhello_html_m4861acf2.gifhello_html_38232feb.gif,

hello_html_28fa7865.gifrangA = 2.

Пример 3. Определить ранг матрицы hello_html_52ebf159.gif

Переставим первый и второй столбец местами:

hello_html_52ebf159.gif~ hello_html_m469bb9ac.gif

Чтобы иметь дело с меньшими числами, умножим первый столбец на hello_html_m1a1ba61f.gif ~hello_html_b700970.gif

Первую строку прибавляем ко второй и третьей, умножая при этом на (-2) и на (-1) соответственно: ~ hello_html_m3d2164b7.gif

Умножим вторую строку на hello_html_m1928cb17.gif, получим: ~ hello_html_7a1da2bf.gif

Умножим вторую строку на (-2) и прибавим ее к третьей строке:

~ hello_html_m721e21ed.gif

Вычеркиваем третью строку: ~ hello_html_b39ee6d.gif.

Отсюда видно, что ранг матрицы равен rang=2.

Контрольные вопросы

  1. Какая матрица называется обратной по отношению к данной?

  2. Каков порядок вычисления обратной матрицы?

  3. Что называется рангом матрицы?

  4. Какая матрица называется невырожденной?

  5. Перечислите свойства обратной матрицы.

Занятие (лекция)

Тема: Системы линейных уравнений

План:

  1. Основные понятия.

  2. Решение невырожденных линейных систем формулами Крамера.

  3. Решение систем линейных уравнений матричным методом

  4. Решение систем линейных уравнений методом Гаусса.

Цели занятия:

На занятии вы узнаете

  • Понятие системы линейных алгебраических уравнений, основной матрицы, расширенной матрицы, совместной и несовместной системы, однородной, матричного уравнения.

  • Формулировку теоремы Крамера.

  • Формулы Крамера.

  • В каком случае система линейных уравнений не имеет решения или имеет бесчисленное множество решения.

  • Правило решения матричного уравнения.

  • Процесс решения систем линейных уравнений по методу Гаусса.

Порядок работы на занятии:

  1. Прочитать текст лекции или прослушать лекцию преподавателя.

  2. Законспектировать лекцию.

  3. Ответить на контрольные вопросы, не заглядывая в конспект.

  4. Проверьте свои ответы по конспекту.

  5. Если ответы ошибочны, еще раз прочитайте лекцию и ответьте на контрольные вопросы. Будьте готовы к устному опросу и к применению знаний на практических занятиях.

1. Основные понятия

Системой линейных алгебраических уравнений, содержащей m уравнений и n неизвестных, называется система вида

hello_html_m35123c6b.gif

(1)

где числа a11, a12,…, amn, называются коэффициентами системы или коэффициентами при неизвестных.

Первый индекс у коэффициентов системы указывает на номер уравнения, второй на номер неизвестного, при котором записан этот коэффициент.

Числа b1, b2,…, bm называются свободными членами. Система линейных уравнений называется однородной, если все свободные члены равны нулю, если же, хотя бы одно из них отлично от нуля, то неоднородной.

Решением системы (1) называется любая совокупность чисел

x1, x2, x3,…,xn — подстановка которой в (1) обращает каждое уравнение этой системы в верное числовое равенство. Система, имеющая хотя бы одно решение, называется совместной, имеющая только одно решение определенной, имеющая более одного решения — неопределенной, не имеющая ни одного решения — несовместной.

Решить систему (1) — это значит указать все множество ее решений или доказать ее несовместность.

Систему (1) удобно записать в компактной матричной форме А∙Х=В. Здесь А – матрица коэффициентов системы, называемая основной матрицей:

hello_html_63bcf202.gifhello_html_m74603bb0.gif— вектор-столбец из неизвестных hello_html_m8533f2e.gif,hello_html_m3b6b48f4.gif— вектор-столбец из свободных членов hello_html_71065644.gif.

Произведение матриц А∙Х определено, так как в матрице А столбцов столько же, сколько строк в матрице Х (n штук).

Расширенной матрицей системы называется матрица hello_html_60c4617e.gif системы, дополненная столбцом свободных членов hello_html_m61fa7286.gif

2. Решение линейных систем формулами Крамера.

Пусть дана система n линейных уравнений с n неизвестными

hello_html_3055bbc2.gifили в матричной форме А∙Х=В. Основная матрица такой системы квадратная.

Определитель этой матрицы hello_html_m4feee205.gif называется определителем системы. Если определитель системы отличен от нуля, то система называется невырожденной.

Теорема Крамера. Система n уравнений с n неизвестными, определитель которой отличен от нуля, всегда имеет решение и притом единственное, и это решение находится по формулам:

hello_html_m55aa864a.gif, hello_html_m5fa0b388.gif, hello_html_111bbbcc.gif, …, hello_html_26ba75a0.gif

где хi – определитель матрицы, получаемой из матрицы системы заменой столбца i столбцом свободных членов bi.

Оно находится следующим образом: значение каждого из неизвестных равно дроби, знаменателем которой является определитель системы, а числитель получается из определителя системы замены столбца коэффициентов при искомом неизвестном на столбец свободных членов.

Пусть hello_html_65b444f0.gif. Если в определителе системы заменить поочередно столбцы коэффициентов при hello_html_3ab7a582.gif на столбец свободных членов, то получим n определителей (для n неизвестных)

hello_html_6a2df98.gif, hello_html_m7c81fc60.gif, … , hello_html_m2cea8b08.gif

Тогда формулы Крамера для решения системы n линейных уравнений с n неизвестными запишутся так: hello_html_7816bcd3.gif hello_html_1b63fe1e.gif… , hello_html_1cfab346.gif или короче hello_html_m646ac242.gif где i=1, 2, …, n.

Рассмотрим случай, когда определитель системы равен нулю. Здесь возможны два варианта:

  1. hello_html_m5e260637.gifи каждый определитель hello_html_275aa4f5.gif. Это имеет место только тогда. Когда коэффициенты при неизвестных hello_html_m161ee71a.gif пропорциональны, т.е. каждое уравнение системы получается из первого уравнения умножением обеих его частей на число k. Очевидно, что при этом система имеет бесчисленное множество решений.

  2. hello_html_m5e260637.gifи хотя бы один из определителей hello_html_m4f44d783.gif. Это имеет место только тогда, когда коэффициенты при неизвестных, кроме hello_html_m161ee71a.gif, пропорциональны. При этом получается система из противоречивых уравнений, которая не имеет решений.

Пример 1. Решить систему двух линейных уравнений с двумя неизвестными hello_html_3a78d1b1.gif

Решение. Вычислим определитель системы hello_html_753f07cc.gif и определители hello_html_250408d8.gifиhello_html_m14b95a71.gif:

hello_html_2c76110f.gif. hello_html_65b444f0.gif

hello_html_4c124a20.gif

hello_html_30b423e0.gif

hello_html_4c4e1a03.gifhello_html_240fab83.gif

x1=1, x2=2

Ответ: (1;2)

3. Решение систем линейных уравнений матричным методом

Пусть дана система уравнений hello_html_23100132.gif

Рассмотрим матрицу, составленную из коэффициентов при неизвестных hello_html_22d4e4ac.gif.

Свободные члены и неизвестные можно записать в виде матриц-столбцов: hello_html_m7845df60.gif, hello_html_m1c6ae01a.gif

Тогда используя правило умножения матриц, эту систему уравнений можно записать так:

hello_html_919fc31.gifhello_html_m18a29d75.gif=hello_html_m26472fd5.gif или АХ=В hello_html_m23785cf1.gif hello_html_2e66332f.gif

Это равенство называется простейшим матричным уравнением.

Чтобы решить матричное уравнение, нужно:

  1. Найти обратную матрицу hello_html_7aade5f8.gif.

  2. Найти произведение обратной матрицыhello_html_7aade5f8.gif на матрицу – столбец свободных членов В, т.е.hello_html_f28219a.gif.

  3. Пользуясь определением равных матриц, записать ответ.

Пример 2. Решить систему уравнений

hello_html_m7106280e.gifпредставив ее в виде матричного уравнения.

Решение. Перепишем систему в виде АХ=В, где

hello_html_205cb979.gif, hello_html_m2b668b21.gif, hello_html_b4dd85e.gif

Решение матричного уравнения имеет вид hello_html_m24b647cc.gif.

Найдем обратную матрицу hello_html_7aade5f8.gif:

hello_html_m158be8f2.gif

hello_html_7e7c2e6e.gif, hello_html_m35e6acc.gif, hello_html_m7d6fea47.gif,

hello_html_39a6cf0c.gif, hello_html_7bcc5e0.gif,hello_html_53df6ca2.gif,

hello_html_5c7ab6ce.gif, hello_html_m57c73c4c.gif,hello_html_m1b24cfd6.gif

Таким образом hello_html_m2bb6532d.gif, откуда hello_html_m24b647cc.gif

hello_html_32e99894.gifСледовательно, х=2, y=3, z=-2.

Ответ: (2;3;-2)

4. Решение систем линейных уравнений методом Гаусса

Одним из наиболее универсальных и эффективных методов решений линейных алгебраических систем является метод Гаусса, состоящий в последовательном исключении неизвестных.

Пусть дана система уравнений hello_html_3b81b4d5.gif

Процесс решения по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система приводится к ступенчатому (в частности треугольному) виду.

Приведенная ниже система имеет ступенчатый вид:

hello_html_m30988835.gif

На втором этапе (обратный ход) идет последовательное определение неизвестных из полученной ступенчатой системы.

При выполнении прямого хода используют следующие преобразования:

  1. умножение или деление коэффициентов свободных членов на одно и то же число;

  2. сложение и вычитание уравнений;

  3. перестановку уравнений системы;

  4. исключение из системы уравнений, в которых все коэффициенты при неизвестных и свободные члены равны нулю.

Матричный способ решения систем линейных уравнений, как и решение, методом Крамера, применим только для особых систем линейных уравнений, в которых количество неизвестных совпадает с количеством уравнений.

Метод Гаусса применим для решения произвольных систем линейных уравнений и, следовательно, является универсальным методом. Этот метод позволяет существенно упростить и сам процесс поиска решений, если все промежуточные преобразования осуществить над специальной матрицей B составленной из коэффициентов системы и ее свободных членов. hello_html_m61fa7286.gif

Пример 3. Решить систему линейных уравнений методом Гаусса. hello_html_m54b3ecf2.gif

Решение.

Составим расширенную матрицу системы.

hello_html_m6f122434.gif

Таким образом, исходная система может быть представлена в виде:

hello_html_m5f9b3d0b.gif, откуда получаем: x3 = 2; x2 = 5; x1 = 1.

Ответ: (1;5;2)

Контрольные вопросы

  1. Как записать простейшее матричное уравнение?

  2. Как решить матричное уравнение?

  3. Сформулируйте теорему Крамера.

  4. Запишите формулы Крамера.

  5. Опишите метод Гаусса.

  6. В каком случае система не имеет решения?

  7. В каком случае система имеет бесчисленное множество решения?

Занятие (практическое)

Тема: Решение системы линейных уравнений

Цели занятия:

К занятию надо знать.

  • Формулировку теоремы Крамера.

  • Формулы Крамера.

  • В каком случае система линейных уравнений не имеет решения или имеет бесчисленное множество решения.

  • Правило решения матричного уравнения.

  • Процесс решения систем линейных уравнений по методу Гаусса.

На занятии надо научиться:

  • Решать систему линейных уравнений формулами Крамера.

  • Решать систему линейных уравнений матричным методом.

  • Решать систему линейных уравнений методом Гаусса.

Порядок работы на занятии:

  1. Повторить формулы Крамера.

  2. Повторить правило решения матричного уравнения.

  3. Повторить процесс решения систем линейных уравнений по методу Гаусса.

  4. Рассмотреть образец решения задания 1.

  5. Выполнить задание 2.

  6. Выполненное задание покажите преподавателю. Возможен устный

Задание 1. Решить систему уравнений: hello_html_m58cada6.gif

  • Формулами Крамера

  • Матричным методом

  • Методом Гаусса

Решение.

  • Формулами Крамера:

=hello_html_6027b493.gif = 20 – 12 – 3+8 – 45+2= – 30;

x = hello_html_566972d6.gif = 0 – 48 – 42 +32 + 28 – 0 = 30;

y = hello_html_m41bfa134.gif = 140 + 0 – 16 + 56 – 0 – 240 = – 60;

z = hello_html_m55eeb0e8.gif = 160 – 56 + 0 – 0+16 –210 = – 90;

x = x/ = 1; y = y/ = 2; z = z/ = 3.

Ответ: (1,2,3)

  • Матричным методом:

Х = hello_html_m7def027d.gif, B = hello_html_m3807e698.gif, A = hello_html_256cbbfc.gif

Найдем обратную матрицу А-1.

= det A = hello_html_27c924ea.gif20 – 12 – 3 + 8 – 45+2= -30.

А11 = hello_html_e02890a.gif = -5; А21 = hello_html_m7039cd25.gif = -1; А31 = hello_html_m43c08bf4.gif = -1;

А12 =hello_html_m5d2ff916.gif А22 = hello_html_ea0c7f1.gif А32 = hello_html_5a45c145.gif

А13 = hello_html_m6d2d8e6a.gif А23 =hello_html_98f16a.gif А33 = hello_html_m19f95f87.gif

hello_html_m64217199.gifA-1 =hello_html_2142bebe.gif;

Находим матрицу Х.

Х = hello_html_m7def027d.gif= А-1В = hello_html_707e620.gifhello_html_m3807e698.gif= hello_html_5c343b95.gif.

Итого решения системы: x =1; y = 2; z = 3

Ответ:(1,2,3)

  • Методом Гаусса

Составим расширенную матрицу системы.

hello_html_e56f71.gif(Переставим местами первую и вторую строки, затем местами меняем вторую и третью строки; первую умножим на (-4) и сложим со второй; первую умножим на (-5) и сложим с третьей; вторую умножим на (-11/5) и сложим с третьей; можно вторую умножить на (-11), а вторую на 5, затем вторую и третью сложить, при этом получится расширенная матрица hello_html_m77ec431e.gifи.т.д.)

Таким образом, исходная система может быть представлена в виде:

hello_html_m3fba4872.gif, откуда получаем: z = 3; y = 2; x = 1.

Ответ: (1,2,3)

Задание 2. Решить систему тремя способами:

hello_html_4901a812.gif

  • по формулам Крамера

  • матричным методом;

  • методом Гаусса.

Соответствующие коэффициенты выберите из таблицы:

Вариант

k

l

m

n

p

q

r

s

t

f

g

h

1

1

1

1

0

2

1

0

4

1

-1

-2

5

2

1

1

-1

-4

2

3

1

-1

1

-1

2

6

3

2

1

1

3

5

-2

3

0

1

0

2

5

4

1

1

-1

0

2

3

-2

2

3

-2

0

1

5

1

1

1

4

2

1

3

9

3

3

-1

0

6

2

1

1

-3

3

1

-2

7

3

1

0

1

7

3

-1

-1

2

1

1

1

0

2

2

3

7

8

2

1

-1

3

3

2

2

-7

1

0

1

-2

9

1

1

1

6

2

-1

2

6

3

1

-1

2

10

1

1

2

3

2

-1

0

3

3

-1

0

1

Занятие (Контрольная работа)

Тема: Решение систем линейных уравнений

Вариант 1

Решить систему тремя способами:

— по формулам Крамера

— матричным методом;

— методом Гаусса.

hello_html_m65b8e066.gif

Вариант 2

Решить систему тремя способами:

— по формулам Крамера

— матричным методом;

— методом Гаусса.

hello_html_7c06f324.gif

Вариант 3

Решить систему тремя способами:

— по формулам Крамера;

— матричным методом;

— методом Гаусса.

hello_html_4d3a83e8.gif

Вариант 4

Решить систему тремя способами:

— по формулам Крамера;

— матричным методом;

— методом Гаусса.

hello_html_m7f8ec1ae.gif

Вариант 5

Решить систему тремя способами:

— по формулам Крамера;

— матричным методом;

— методом Гаусса.

hello_html_m3aaceb9d.gif

Вариант 6

Решить систему тремя способами:

— по формулам Крамера;

— матричным методом;

— методом Гаусса.

hello_html_mabd5ff8.gif

Вариант 7

Решить систему тремя способами:

— по формулам Крамера

— матричным методом;

— методом Гаусса.

hello_html_m633d6c73.gif

Вариант 8

Решить систему тремя способами:

— по формулам Крамера;

— матричным методом;

— методом Гаусса.

hello_html_m25f311e9.gif

Вариант 9

Решить систему тремя способами:

— по формулам Крамера;

— матричным методом;

— методом Гаусса.

hello_html_7744ad3b.gif

Вариант 10

Решить систему тремя способами:

— по формулам Крамера;

— матричным методом;

— методом Гаусса.

hello_html_77a2fdb9.gif

Вариант 11

Решить систему тремя способами:

— по формулам Крамера;

— матричным методом;

— методом Гаусса.

hello_html_3c1506f2.gif

Вариант 12

Решить систему тремя способами:

— по формулам Крамера;

— матричным методом;

— методом Гаусса.

hello_html_457b9b7a.gif

Вариант 13

Решить систему тремя способами:

— по формулам Крамера;

— матричным методом;

— методом Гаусса.

hello_html_1581266b.gif

Вариант 14

Решить систему тремя способами:

— по формулам Крамера;

— матричным методом;

— методом Гаусса.

hello_html_m294c49c7.gif

Вариант 15

Решить систему тремя способами:

— по формулам Крамера;

— матричным методом;

— методом Гаусса.

hello_html_m38eb09f9.gif

Вариант 16

Решить систему тремя способами:

— по формулам Крамера;

— матричным методом;

— методом Гаусса.

hello_html_6356c88b.gif

Вариант 17

Решить систему тремя способами:

— по формулам Крамера

— матричным методом;

— методом Гаусса.

hello_html_1a82d004.gif

Вариант 18

Решить систему тремя способами:

— по формулам Крамера

— матричным методом;

— методом Гаусса.

hello_html_1d6e50c.gif

Вариант 19

Решить систему тремя способами:

— по формулам Крамера

— матричным методом;

— методом Гаусса.

hello_html_m75f23d2b.gif

Вариант 20

Решить систему тремя способами:

— по формулам Крамера

— матричным методом;

— методом Гаусса.

hello_html_m5d532389.gif

Вариант 21

Решить систему тремя способами:

— по формулам Крамера

— матричным методом;

— методом Гаусса.

hello_html_m4205f4d8.gif

Вариант 22

Решить систему тремя способами:

— по формулам Крамера

— матричным методом;

— методом Гаусса.

hello_html_e3b6f5e.gif

Заключение

Методическая разработка составлена в соответствии с требованиями ФГОС для студентов второго курса по специальностям среднего профессионального образования. Она соответствует примерной рабочей программе дисциплины «Элементы высшей математики» по специальности «Компьютерные сети», а также дисциплины «Математика» специальностей например, «Сварочное производство», «Техническая эксплуатация и обслуживание электрического и электромеханического оборудования» и включает раздел «Элементы линей алгебры» по темам: «матрицы. Определители. Системы линейных уравнений. Методы решения систем линейных уравнений».

Известно, учебный материал усваивается студентами (особенно имеющими значительный перерыв и пробелы математической подготовке) значительно легче, если он сопровождается достаточно большим числом иллюстрирующих его примеров. Поэтому мною сделана попытка соединить краткий теоретический материал и краткое руководство к решению задач. Для лучшего усвоения учебного материала приводятся образцы решения вычисления определителей, выполнения действий с матрицами, решения систем линейных уравнений различными методами, определенного круга задач данного раздела. В конце даны задания для практических, самостоятельных и контрольных работ.

Математика играет важную роль в естественно – научных, инженерно – технических и гуманитарных исследованиях. Она стала для многих отраслей знаний не только орудием количественного расчета, но также методом точного исследования и средством предельно четкой формулировки понятий и проблем. Без современной математики с её развитым логическим и вычислительным аппаратом был бы невозможен прогресс в различных областях человеческой деятельности.

Математика является не только мощным средством решения прикладных задач и универсальным языком науки, но также и элементом общей культуры. Поэтому математическое образование следует рассматривать как важнейшую составляющую в системе фундаментальной подготовки современного специалиста.

Основная задача, которая ставилась при составлении данной разработки, — это изложить учебный материал в доступной для студентов форме, сохраняя, безусловно, научную основу, требования к содержанию и логике изложения, поможет в подготовке, как к практическим, так и к самостоятельным работам.

Литература

  1. Валуцэ И.И., Дилигул Г.Д. Математика для техникумов на базе средней школы. Учебн. Пособие. – М.: Наука, 1990.

  1. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. В 2–х ч.: Учеб.пособие для втузов. – 5–е изд., испр. – М.: Высш.шк., 1999. – 304 с.: ил.

  2. Кремер Н.Ш «Высшая математика для экономистов», 2000г.

  1. Шипачев В.С. Высшая математика. Учеб.для вузов.-М.: Высш.школа. 1998.- 497с.: ил.

  1. Шипачев В.С. Задачник по высшей математике. Учеб.пособие для вузов.-М.: Высш.школа. 1998.- 304с.: ил.

  1. В. Т. Лисичкин, И. Л. Соловейчик. Математика. Учеб.пособие для техникумов.-М.: Высш.школа. 1991. – 480 с.: ил

  1. Дмитрий Письменный Конспект лекций по высшей математике Учеб.пособие для втузов. – 3-е изд.. – М.: Айрис – пресс; 2005. – 608 с.: ил.

  1. Н. В. Богомолов Практические занятия по математике: Учеб.пособие для втузов. – 4–е изд., стер. – М.: Высш.шк.,1997. – 495с.

  2. В. Д. Черненко ВЫСШАЯ МАТЕМАТИКА В примерах и задачах 1 том Учебное пособие для вузов. В 3 т.: Т. 1.— СПб.: Политехника, 2003.— 703 с: ил.

  3. Математика. Контрольные задания / Сост.: В.И. Фомин. Тамбов: Изд-во Тамб. гос. техн. ун-та, 2004. 88 с.

  4. Учебно-методический комплекс дисциплины « Математика». Раздел 1 «Линейная и векторная алгебра». Контрольно-измерительные материалы. – Уфа: Издательство УГНТУ, 2007. – 175 с

Приложение 1

ДОПОЛНИТЕЛЬНО

Задачи

Тема: Матрицы. Системы линейных алгебраических уравнений (СЛАУ).

Перед выполнением работы рекомендуется изучить следующие вопросы.

Вопросы для изучения:

  1. Виды матриц. Операции над матрицами.

  2. Определители квадратных матриц. Свойства определителей.

  3. Вычисление определителей.

  4. Вычисление обратной матрицы.

  5. Матричные уравнения. Ранг матрицы. Базисный минор.

  6. Основные понятия и определения СЛАУ. Теорема Кронекера-Капелли.

  7. Элементарные преобразования СЛАУ.

  8. Метод Гаусса.

  9. Правило Крамера для решения СЛАУ.

  10. Матричный метод решения СЛАУ.

  11. Однородные системы алгебраических уравнений. Фундаментальная система решений.

  12. Вид общего решения неоднородной СЛАУ. Базисное решение и частное решение СЛАУ.

Задача: Пусть дана система:hello_html_49202590.gif

Доказать совместимость этой системы и решить ее двумя способами:

1.По правилу Крамера.

2.Матричным методом.

Решение: Совместимость системы уравнений устанавливается с помощью теоремы Кронекера — Капели.

Теорема: Для того чтобы система была совместной, необходимо и достаточно, чтобы ранг матрицы системы совпал с рангом расширенной матрицы: hello_html_657d30b4.gif

Для совместных систем линейных уравнений верны следующие теоремы:

1.Если ранг матрицы системы равен числу переменных, то есть r = n, то система имеет единственное решение.

2. Если ранг матрицы системы меньше числа переменных, то есть r<n, то система неопределенная и имеет бесконечное множество решений.

В данной задаче составим расширенную матрицу и путем элементарных преобразований приведем ее к ступенчатому виду:

hello_html_m5d82fed2.gif

Видим, что hello_html_7be3157.gif=4, то есть система совместна и имеет единственное решение, так как ранг расширенной матрицы равен числу неизвестных.

Решим систему по правилу Крамера:

  1. Составим определитель из коэффициентов при неизвестных,

hello_html_m62a00377.gifhello_html_3be33741.gif

2.Составим определители для каждой неизвестной следующим образом:

а) заменим первый столбец в определителе системы на столбец свободных членов системы и назовем его hello_html_209a2d3e.gifи вычислим:

hello_html_d6626b5.gif

б) заменим второй столбец в определителе системы на столбец свободных членов, назовем егоhello_html_m6342deea.gif и вычислим:

hello_html_5f244e7b.gif

в) аналогично вычисляем остальные определители, т.е. hello_html_3ead2d7e.gif:

заменяем третий столбец в определителе системы столбцом свободных членов и вычисляем определитель:

hello_html_m4715f050.gif

По правилу Крамера:

hello_html_2948606d.gif

  1. Решим систему линейных уравнений матричным способом.hello_html_49202590.gif

Составим матрицу, содержащую коэффициенты при неизвестных данной системы:hello_html_9a0768.gif

hello_html_m1c22a99b.gif

Для дальнейшего решения полученного уравнения нужно:

hello_html_3ad2a5bc.gif

Вычислим алгебраические дополнения матрицы А по формуле

hello_html_19bc09a3.gif

hello_html_6912a139.gif

hello_html_m53d4ecad.gif

hello_html_270111a6.gif

hello_html_m2a3c2f87.gif

Запишем обратную матрицу по соответствующей формуле:

hello_html_m78f6f1c8.gif

Решение СЛАУ находим по формуле:

hello_html_m1e5b09c5.gifhello_html_3e96d408.gif

Приложение 2

Решить

Задачи 1-10.

  1. Решить систему методом Гаусса.

  2. Неизвестные найти методом Крамера.

  3. Решить систему матричным методом.

1.hello_html_m65fe4ba2.gif

2. hello_html_536624e7.gif

3. hello_html_m14754478.gif

4. hello_html_3521aabf.gif

5. hello_html_4f6bed5.gif

6. hello_html_m37f2a9f8.gif

7. hello_html_6ad5e1cb.gif

8. hello_html_2de878ca.gif

9. hello_html_51bfc7e0.gif

10.hello_html_39db8170.gif

Приложение 3

Пример решения контрольной (самостоятельной ) работы

Задание 1. Для данного определителя hello_html_mbcfcf81.gif найти миноры и алгебраические дополнения элементов hello_html_7ce728c3.gif. Вычислить определитель hello_html_mbcfcf81.gif:

1. а) разложив его по элементам i-ой строки; б) разложив его по элементам j-го столбца; в) получив предварительно нули в i-ой строки.

hello_html_m2e9a9373.gif

i = 1, j = 2

Решение: 1. Находим миноры к элементам hello_html_m7ee6f811.gif:

hello_html_m3678b89e.gif

hello_html_m6291db19.gif

Алгебраические дополнения элементов hello_html_m7ee6f811.gif соответственно равны:

hello_html_m2248d3d3.gif

2. а). Вычислим определитель, разложив его по элементам первой строки:

hello_html_m66cdecd.gif

б) Вычислим определитель, разложив его по элементам второго столбца:

hello_html_m56ad05eb.gif

в) Вычисли определитель hello_html_7ec5464c.gif, получив предварительно нули в первой строке. Используем свойство определителей: определитель не изменится, если ко всем элементам какой-либо строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одно и то же произвольное число. Умножим третий столбец определителя на 3 и прибавим к первому, затем умножим на (-2) и прибавим ко второму. Тогда в первой строке все элементы, кроме одного, будут нулями. Разложим полученный таким образом определитель по элементам первой строки и вычислим его:

hello_html_m33066a47.gif

В определителе третьего порядка получили нули в первом столбце по свойству тому же свойству определителей.

Задание 2. Даны две матрицы A и B. Найти: а) AB; б) BA; в) hello_html_6eaa52d6.gif; г) hello_html_m67349561.gif.

hello_html_m6a904bd9.gif

Решение: а) Произведение АВ имеет смысл, так как число столбцов матрицы А равно числу строк матрицы В. Находим матрицу С=АВ, элементы которой определяются по формуле hello_html_3efe294.gif. Имеем:

hello_html_3c4241ab.gif

б) Вычислим

hello_html_m7584fe37.gif

Очевидно, что hello_html_1d316b5c.gif;

в) Обратная матрица hello_html_4ad3614a.gif матрицы А имеет вид

hello_html_52b16bcf.gif,

где hello_html_m16c14cc9.gif— алгебраическое дополнение, hello_html_e4ddd5d.gif-минор, т.е. определитель полученный из основного определителя вычёркивание i-строки, j-столбца.

hello_html_4cc53faf.gif,

т.е. матрица A — невырожденная, и, значит, существует матрица hello_html_4ad3614a.gif. Находим:

hello_html_m3435b71c.gif

hello_html_m1e912a6f.gif

hello_html_m19a7af22.gif

Тогда

hello_html_2298e732.gif;

г) Проверка

hello_html_47ec5e3c.gif;

Задание 3. Проверить совместность линейной системы уравнений и в случае совместности решить ее а) по формулам Крамера б) методом Гаусса.

hello_html_m57119d2b.gif

Решение: Совместность данной системы проверим по теореме Кронекера — Капелли. С помощью элементарных преобразований найдем ранг матрицы

hello_html_823ad97.gif

данной системы и ранг расширенной матрицы

hello_html_m4cd9e1d3.gif

Для этого умножим первую строку матрицы В на (-2) и сложим со второй, затем умножим первую строку на (-3) и сложим с третьей, поменяем местами второй и третий столбцы. Получим

hello_html_m47000960.gif.

Следовательно, hello_html_6423d22f.gif (т. е. числу неизвестных). Значит, исходная система совместна и имеет единственное решение.

а) По формулам Крамера hello_html_355246e.gif,

где hello_html_54ea6945.gif-главный определитель, который мы посчитаем, например, по правилу треугольника

hello_html_32c58934.gif,

Аналогично найдем hello_html_46f34f40.gif

hello_html_16439c7d.gif,

hello_html_5be4e91d.gif,

hello_html_mdde0052.gif,

Находим: hello_html_m462afc29.gif.

б) Решим систему методом Гаусса. Исключим hello_html_70e022ea.gif из второго и третьего уравнений. Для этого первое уравнение умножим на 2 и вычтем из второго, затем первое уравнение умножим на 3 и вычтем из третьего:

hello_html_7635fe54.gif

Из полученной системы находим hello_html_3bde5e3.gif.

Задание 4. Решить матричное уравнение

hello_html_md5ec697.gif

Пусть hello_html_m419c80f1.gif hello_html_40ae5a99.gif,

hello_html_53674aa6.gifрешение матричного уравнения находим по формуле Х=А -1В , где А -1 обратная матрица

hello_html_m6e545777.gifhello_html_m3d262150.gif— алгебраическое дополнение, где

hello_html_m7d70744e.gif— определитель, полученный из основного вычеркивание i-строки, j-столбца,

hello_html_54ea6945.gif— определитель матрицы.

Найдем обратную матрицу.

hello_html_72c3a8e8.gif(-1)1+14=4 А12=(-1)1+23=-3 А21= (-1)2+12=-2

А22=(-1)2+21=1 detA=hello_html_m7ac1dec8.gif=1*4-2*3=4-6=-2

hello_html_57aa5038.gif

Итак,

hello_html_m423d1aa6.gif

hello_html_7c51490a.gif

Задание 5. Предприятие выпускает три вида продукции, используя сырье трёх видов: hello_html_3b237a3f.gif. Необходимые характеристики указаны в таблице .

Вид сырья

Нормы расхода сырья на изготовление одного вида продукции, усл. ед.

Расход сырья за один день, усл. ед.

сапог

кроссовок

ботинок

S1

S2

S3

5

2

3

3

1

2

4

1

2

2700

900

1600

Найти ежедневный объем выпуска каждого вида продукции.

Решение: Пусть ежедневно фабрика выпускает x1 – единиц продукции первого вида, x2 — единиц продукции второго вида, x3 — единиц продукции третьего вида . Тогда в соответствии с расходом сырья каждого вида имеем систему.

hello_html_b955e92.gif

Решаем систему линейных уравнений любым способом. Решим данную систему, например, методом Гаусса. Составим матрицу из коэффициентов стоящих перед неизвестными и из свободных членов.

Обнуляем первый столбец, кроме первого элемента

1. Первую строчку оставляем без изменения

2. Вместо второй записываем сумму первой, умноженной на -2 и второй, умноженной на 5

3. Вместо третьей записываем сумму первой, умноженной на -3 и третьей, умноженной на 5

Аналогично обнуляем второй столбец под элементом второй строки второго столбца

hello_html_m672416cb.gif˜hello_html_mb3b3a86.gifhello_html_m512d9a8e.gif˜hello_html_7fcbcafe.gif

Вернемся к системе

hello_html_557e81f2.gifhello_html_m36be6f00.gif

Т.е. фабрика выпускает 200- единиц продукции первого вида, 300- единиц продукции второго вида и 200- единиц продукции третьего вида.

Задание 6. Решить однородную систему линейных алгебраических уравнений.

hello_html_m7e05de7a.gif

Решение: Так как определитель системы

hello_html_m1ddb6698.gif,

то система имеет бесчисленное множество решений. Поскольку hello_html_m30bace0c.gif, hello_html_4cb3cae4.gif, возьмем любые два уравнения системы (например, первое и второе) и найдем ее решение. Имеем:

hello_html_m18d6ff39.gif

Так как определитель из коэффициентов при неизвестных hello_html_70e022ea.gif и hello_html_3e443741.gif не равен нулю, то в качестве базисных неизвестных возьмем hello_html_70e022ea.gif и hello_html_3e443741.gif (хотя можно брать и другие пары неизвестных) и переместим члены с hello_html_5628bf38.gif в правые части уравнений:

hello_html_m4d87099c.gif

Решаем последнюю систему по формулам Крамера :

hello_html_m62ac2af0.gifгде hello_html_m268440f6.gifhello_html_405f8596.gif, hello_html_5b060b3b.gif.Отсюда находим, что hello_html_366fba46.gif Полагая hello_html_m1c95db55.gif, где kпроизвольный коэффициент пропорциональности (произвольная постоянная), получаем решение исходной системы: hello_html_m678177aa.gif.

Задания к самостоятельной работе

Задание 1. Для данного определителя hello_html_mbcfcf81.gif найти миноры и алгебраические дополнения элементов hello_html_m39003f0.gif. Вычислить определитель hello_html_mbcfcf81.gif: а) разложив его по элементам i-ой строки; б) разложив его по элементам j-го столбца; в) получив предварительно нули в i-ой строки.

1.1hello_html_m72da5d34.gif i = 4, j = 1 1.2 hello_html_76d7ae51.gif i = 3, j = 3

1.3 hello_html_6f5e250c.gif i = 4, j = 1 1.4 hello_html_9631cd5.gif i = 1, j = 3

1.5 hello_html_1133e14e.gif i = 2, j = 4 1.6 hello_html_m51101124.gif i = 1, j = 2

1.7hello_html_m62e97b8c.gif i = 2, j = 3 1.8 hello_html_72572b62.gif i = 3, j = 2

1.9 hello_html_m4e5b3322.gif i = 4, j = 3 1.10 hello_html_m38ae43b9.gif i = 4, j = 2

Задание 2. Даны две матрицы A и B. Найти: а) AB; б) BA; в) hello_html_29c8ed85.gif;

г) hello_html_m69ca57c9.gif.

2.1 hello_html_ab3c2c2.gif

2.2 hello_html_m4a58df9e.gif

2.3 hello_html_61e210a6.gif

2.4hello_html_m4b892103.gif

2.5 hello_html_m64f0a0d5.gif

2.5 hello_html_65b24dff.gif

2.6 hello_html_764313ec.gif

2.7 hello_html_m778d4df6.gif

2.8hello_html_ma51ac1a.gif

2.9hello_html_m7ed74354.gif

2.10hello_html_4742d52d.gif

Задание 3. Проверить совместность линейной системы уравнений и в случае совместности решить ее: а) по формулам Крамера; б) методом Гаусса.

3.1hello_html_623add8.gif 3.2 hello_html_1af1842f.gif

3.3 hello_html_m779e3156.gif 3.4 hello_html_m755e2cb7.gif

3.5 hello_html_3ed934a4.gif 3.6 hello_html_m44cde647.gif

3.7 hello_html_5b67b.gif 3.8 hello_html_45be01d.gif

3.9 hello_html_m1d595912.gif 3.10 hello_html_m74222450.gif

Задание 4. Решить матричное уравнение

4.1 hello_html_m3c0a856d.gif 4.2 hello_html_m7c236458.gif

4.3 hello_html_30fd7c69.gif 4.4 hello_html_1f146f57.gif

4.5 hello_html_553ff0c.gif 4.6 hello_html_m311d32aa.gif

4. 7 hello_html_m7629e0dc.gif 4. 8 hello_html_m7cc344ab.gif

4. 9 hello_html_276a0078.gif 4.10 hello_html_4e4f26ad.gif

Задание 5.

5.1. Обувная фабрика специализируется по выпуску изделий трех видов: сапог, кроссовок и ботинок, при этом используется сырьё трёх типов: hello_html_3dcc55db.gif. Нормы расхода каждого из них на изготовление одной пары обуви и объем расхода сырья за один день заданы в таблице.

Вид сырья

Нормы расхода сырья на изготовление одной пары, усл. ед.

Расход сырья за один день, усл. ед.

сапог

кроссовок

ботинок

S1

S2

S3

2

2

2

5

0

1

1

4

1

18

20

10

Найти ежедневный объем выпуска каждого вида обуви.

5.2. Предприятие выпускает изделие трех наименовании: A, B, C при этом используется сырьё трёх типов: hello_html_3dcc55db.gif. Необходимые характеристики указаны в таблице. Требуется определить объем выпуска продукции каждого вида при заданных запасах сырья.

Вид сырья

Расход сырья по видам продукции, вес. ед. /изд.

Запас сырья, вес. ед.

А

В

С

S1

S2

S3

2

2

1

2

1

1

1

1

2

6

5

9

5.3. Из некоторого листового материала необходимо выкроить 360 заготовок типа А, 300 заготовок типа Б и 675 заготовок типа В. При этом можно применять три способа раскроя. Количество заготовок, получаемых из каждого листа при каждом способе раскроя, указано в таблице:

Тип заготовки

Способ раскроя

1

2

3

А

В

С

3

1

4

2

6

1

1

2

5

Найти количество листов материалов, раскраиваемых соответственно первым, вторым и третьим способами.

5.4. Автомобильный завод специализируется по выпуску изделий трех видов: А, В, С, при этом используется сырьё трёх типов: hello_html_3dcc55db.gif. Необходимые характеристики указаны в таблице. Требуется определить объем выпуска продукции каждого вида при заданных запасах сырья.

Вид сырья

Расход сырья по видам продукции, вес. ед. /изд.

Запас сырья, вес. ед.

А

В

С

S1

S2

S3

6

4

5

4

3

2

5

1

3

2400

1450

1550

5.5. Предприятие выпускает изделие трех наименовании: стулья, табуретки и столы, при этом используется сырьё трёх типов: hello_html_3dcc55db.gif. Нормы расхода каждого из них на изготовление одного изделия и объем расхода сырья за один день заданы в таблице.

Вид сырья

Нормы расхода сырья на изготовление одного изделия, усл. ед.

Расход сырья за один день, усл. ед.

стул

стол

табуретка

S1

S2

S3

10

4

6

3

1

2

4

1

2

270

90

160

Найти ежедневный объем выпуска каждого вида продукции.

5.6. Швейное предприятие производит зимние пальто, демисезонные пальто и плащи. Используются ткани трех типов Т1, Т2, Т3. В таблице приведены нормы расхода ткани (в метрах) на каждое изделие и объем расхода сырья за один день заданы в таблице. Найти ежедневный объем выпуска каждого вида изделия.

Вид сырья

Нормы расхода сырья на изготовление одного изделия, усл. ед

Расход сырья за один день, усл. ед.

Зимнее пальто

Демисезонное пальто

Плащ

Т1

10

6

16

270

Т2

4

2

2

90

Т3

6

4

4

160

5.7. Кондитерская фабрика специализируется по выпуску трех видов тортов: “Классический”, ” Идеал “ и “Воздушный” , при этом используется сырьё трёх типов: hello_html_3dcc55db.gif. Необходимые характеристики указаны в таблице. Требуется определить объем выпуска продукции каждого вида при заданных запасах сырья.

Вид сырья

Нормы расхода сырья на изготовление одного изделия, усл. ед.

Запас сырья, усл. ед.

Классический”

«Идеал“

Воздушный”

S1

S2

S3

3

3

6

1

3

2

3

3

1

18

20

10

5.8. Предприятие занимается сборкой бытовой электронной аппаратуры трех наименовании: телевизоров, стереосистем и акустических систем, при этом используется сырьё трёх типов: hello_html_3dcc55db.gif. Нормы расхода сырья на изготовление одного изделия и объем расхода сырья за один день заданы в таблице.

Вид сырья

Нормы расхода сырья на изготовление одной пары, усл. ед.

Расход сырья за один день, усл. ед.

телевизор

стереосистема

акустическая система

S1

S2

S3

10

4

6

6

2

4

8

2

4

270

90

160

Найти ежедневный объем выпуска каждого вида продукции.

5.9. На предприятие с работниками четырех категорий привезли заработную плату в купюрах следующего достоинства: по 100 рублей -1850 купюр, по 50 рублей – 230 купюр, по 10 рублей – 250 купюр, по 1 рублю – 740 купюр. Распределение купюр по категориям представлены в таблице. Определить, сколько сотрудников каждой категории работает на предприятии.

Достоинство купюры, руб.

Распределение купюр по категориям

Общее количество купюр

1

2

3

4

100

50

10

1

9

1

1

2

7

0

1

3

4

1

0

2

2

1

1

1

1850

230

250

740

5.10. Завод производит электронные приборы трех видов (прибор А, прибор В и прибор С), используя при сборке микросхемы трех видов (тип 1, тип 2, и тип 3). Расход микросхем и объем расхода сырья за один день заданы в таблице. Найти ежедневный объем выпуска каждого вида приборов.

Вид сырья

Нормы расхода сырья на изготовление одного прибора, усл. ед.

Расход сырья за один день, усл. ед.

Прибор А

Прибор В

Прибор С

Тип 1

Тип 2

Тип 3

2

2

2

5

0

1

1

4

1

500

400

400

Задание 6. Решить однородную систему линейных алгебраических уравнений.

6.1 hello_html_m48a69f39.gif 6.2hello_html_mbe4fbd5.gif

6.3 hello_html_6c13106a.gif 6.4 hello_html_7905c782.gif

6.5 hello_html_72edb124.gif 6.6 hello_html_24e72b82.gif

6.7 hello_html_m430f7e8b.gif 6.8 hello_html_m4f2eb26e.gif

6.9 hello_html_d8c3af9.gif 6.10 hello_html_m4c2aaa67.gif

Приложение 4

Применение матриц

Матрицы нашли применение во многих отраслях человеческой деятельности.

  • Матричный язык, обозначения и матричные вычисления широко используются в различных областях современной математики и её приложений. Матрицы являются основным математическим аппаратом линейной алгебры и применяются при исследовании линейных отображений векторных пространств, линейных и квадратичных форм, систем линейных уравнений. Матрицы используются в математическом анализе при интегрировании систем дифференциальных уравнений, в теории вероятностей.

  • Матрицы используются в механике и теоретической электротехнике при исследовании малых колебаний механических и электрических систем, в квантовой механике.

  • При решении задач проектирования дорожных машин возникает необходимость в вычислениях координат вершин тел в пространстве. Такие вычисления удобно производить с помощью матриц в системе МАТLАВ. Предположим, что у нас есть ковш экскаватора, который перемещается в верхней части треугольной системе координат XYZ. Ковш экскаватора имеет сложную поверхность, и его удобней представить в виде куба, в который он заключен, и в дальнейшем работать уже с восемью координатами вершин куба. Матрицу размеров ковша можно задать через восемь координат куба, каждая из которых описывается тремя координатами XYZ. Присвоим l, w, h значения (где l – длина, w – ширина, h – высота ковша) и с помощью функции patch отобразим её и наглядно увидим созданную фигуру.

  • Рассмотрено распространение электромагнитной волны в неоднородной среде, содержащей идеально проводящую плоскость. В модели локально неоднородной среды задача сведена к объемному интегральному уравнению. Получена матрица, решение которой позволило существенно повысить точность вычисления значений вблизи неоднородности.

  • В будущем возможны следующие направления развития фирмы: матричный анализ, применение матриц для оценки сбалансированности номенклатуры и ассортимента товаров, для оценки привлекательности рынка и позиции фирмы.

  • Широкое применение матрицы находят при расчете сооружений с использованием современной вычислительной техники.

  • В экономике применяются матричные модели – балансово-нормативные модели в виде таблиц (матриц), отражающие соотношения затрат и результатов производства, нормативы затрат, производственные и экономические структуры. Применяются в межотраслевом балансе, при составлении техпромфинпланов предприятий и т.д.

С помощью матриц удобно записывать экономические зависимости. Например, таблица распределения ресурсов по отдельным отраслям экономики (усл. ед.)

Ресурсы

Отрасли экономики

промышленность

Сельское хозяйство

Электроэнергия

5,3

4,1

Трудовые ресурсы

2,8

2,1

Водные ресурсы

4,8

5,1

может быть записана в компактной форме в виде матрицы распределения ресурсов по отраслям:

hello_html_m172627ba.gif

В этой записи, например, матричный элемент а11=5,3 показывает, сколько электроэнергии потребляет промышленность, а элемент а22=2,1 – сколько трудовых ресурсов потребляет сельское хозяйство.

Рассмотрим следующую задачу: пусть предприятие выпускает продукцию трех видов: P1, P2, P3 и использует сырье двух типов: S1 и S2. Нормы расхода сырья характеризуются матрицей:

hello_html_1a080387.gif

где каждый элемент аij (i = 1,2,3; j = 1,2) показывает, сколько единиц сырья j-го типа расходуется на производство единицы продукции i-го вида. План выпуска продукции задан матрицей-строкой С = (100 80 130), стоимость единицы каждого типа сырья (ден. ед.) — матрицей столбцом:

hello_html_m44b28955.gif

Рассмотрев задачу, получили: затраты 1-го сырья составляют S1 = 2·100 + 5·80 + 1·130 = 730 ед. и 2-го — S2 = 3·100 + 2·80 + 4·130 = 980 ед., поэтому матрица-строка затрат сырья S может быть записана как произведение:

hello_html_25ab3bc3.gif

Тогда общая стоимость сырья Q = 730·30 + 980·50 = 70900 ден. ед. может быть записана в матричном виде: Q = S·B = (CA)B = (70900).

Общую стоимость сырья можно вычислить и в другом порядке: вначале вычислим матрицу стоимостей затрат сырья на единицу продукции, т.е. матрицу:

hello_html_1b4f5975.gif

а затем общую стоимость сырья:

hello_html_4632af3d.gif

На этом примере мы убедились в выполнении ассоциативного закона произведения матриц: (СА)В = С(АВ).

Проанализировав использования матриц в экономике, мы пришли к выводу, что достоинства матриц состоят в том, что они используют широкий набор стратегически значимых переменных; указывают направление движения ресурсов. Среди недостатков этого инструмента: не обеспечивает реальных рекомендаций по разработке специфических стратегий; по ней невозможно определить сферы бизнеса, которые готовы стать победителями. Также матрицы позволяют с минимальными затратами труда и времени обрабатывать огромный и весьма разнообразный статистический материал, различные исходные данные, характеризующие уровень, структуру, особенности социально-экономического комплекса.

Приложение 5

Образцы решения

Линейная алгебра

Изучить по учебной литературе вопросы:

          1. Матрицы, их виды.

          2. Действия над матрицами.

          3. Определитель матрицы. Вычисление определителей второго и третьего порядков.

          4. Обратная матрица, ее определение и получение обратной матрицы второго и третьего порядков.

          5. Решение матричных уравнений.

          6. Решение системы линейных уравнений по формулам Крамера, в виде матричного уравнения.

Примеры решения задач.

    1. Выполнить действия над матрицами hello_html_41a463e8.gif

Составить матрицу М=(2А – В)hello_html_79c0f69b.gif(В+Е)

Решение

Составим матрицу 2А – В, для чего все элементы матрицы А умножим на 2, а затем из каждого элемента матрицы 2А вычтем соответствующий элемент матрицы В.

hello_html_m147e8933.gif

Составим матрицу В+Е, где матрица Е является единичной матрицей третьего порядка:

hello_html_m2f09ff2.gif

Матрица М является произведением полученных матриц, то есть каждый ее элемент равен сумме произведений соответствующих элементов строки матрицы 2А-В и столбца матрицы В+Е

hello_html_4bdd8a12.gif2. Вычислить определитель матрицы:

а) hello_html_m6c2b7a25.gif

Решение

а) Для вычисления определителя второго порядка воспользуемся правилом, изложенным в учебной литературе:

hello_html_m779aad33.gif

б) Для вычисления определителя третьего порядка воспользуемся одним из правил, называемым разложением по элементам первой строки:

hello_html_23077486.gif

  1. Найти обратную матрицу для матрицы второго порядка hello_html_m14a351ca.gif

Решение

Для получения обратной матрицы А-1 воспользуемся формулой hello_html_75282180.gif, где

hello_html_6160a765.gif

Для проверки можно найти произведение матриц А и А-1; должна получиться единичная матрица второго порядка.

  1. Решить систему уравнений по формулам Крамера hello_html_7b8fdfc0.gif

Решение

Для решения задачи нужно вычислить четыре определителя третьего порядка:

  • главный определитель, составленный из коэффициентов при неизвестных;

  • дополнительный для х, полученный из главного определителя заменой чисел первого столбца на свободные члены;

  • дополнительный для у, полученный из главного определителя заменой чисел второго столбца на свободные члены;

  • дополнительный для z, полученный из главного определителя заменой чисел третьего столбца на свободные члены;

hello_html_m592c87b7.gif

Для получения значений неизвестных требуется разделить значения дополнительных определителей на главный определитель.

hello_html_m7e01cbc0.gif

Решение задачи можно проверить при помощи найденных значений в уравнения системы.

Приложение 6

История развития матриц

Впервые матрица под названием «волшебный квадрат» упоминается еще в Древнем Китае. Подобные квадраты чуть позже были известны и у арабских математиков. С развитием теории определителей в конце 17 века швейцарский математик Габриэль Крамер (1704 — 1752) начал разрабатывать свою теорию и в 1751 году, не задолго до своей смерти, опубликовал «правило Крамера» — метод решения систем линейных алгебраических уравнений (СЛАУ) с ненулевым определителем матрицы системы. В этот же период появился и «метод Гаусса«, применяемый для решения СЛАУ и основанный на последовательном исключении неизвестных.

Как отдельная теория, теория матриц получила свое активное развитие в середине 19 века в работах ирландского математика и физика Уильяма Гамильтона (1805 — 1865) и английского математика Артура Кэли (1821 — 1895). Фундаментальные результаты в теории матриц принадлежат также немецким математикам Карлу Вейерштрассу (1815 — 1897), Фердинанду Георгу Фробениусу (1849 — 1917) и французскому математику Мари Энмону Камиль Жордану (1838 — 1922). Современное название «матрица» было введено английским математиком Джеймсом Сильвестром (1814 — 1897) в 1850 году.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти оборот всех запасов
  • Как найти друзей в калифорнии
  • Флешка определяется как жесткий диск как исправить
  • Как найти квартиры агенту недвижимости
  • Как найти участника японской войны 1945

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии