Общие сведения
Во время перекатывания тел возникает их взаимодействие. Описывается оно силой трения качения. Её существование возможно только при контакте поверхностей. При этом наряду с качением возникают силы покоя и скольжения. Объект, катящийся по другому телу, испытывает только трение, вызванное качением. По сравнению с другими силами оно небольшое, но при этом помогает осуществлять перемещение.
С физической точки зрения, трение представляет собой вектор, направление которого совпадает с линией, проходящей вдоль касательной трущихся поверхностей. Сила, измеряемая относительно перемещения соприкасающихся тел, называется внешней, а возникающая в области одного объекта, например, газа — внутренней.
Трение зависит от поверхности тел. Оно может быть сухим или вязким. В единицах СИ сила измеряется в ньютонах: [P]=H. Существует такое понятие, как адгезия, то есть способность тел «прилипать» друг к другу. Зависит она от шероховатости. Чем этот параметр больше, тем больше нужно затратить энергии для смещения поверхностей, но в то же время её затраты будут меньше для полного торможения.
Таким образом, трение может приносить как пользу, так и вред. С одной стороны, при работе за счёт силы происходит износ поверхностей, а с другой — выполняется торможение. Для уменьшения эффекта существуют несколько способов изменить трение: сгладить поверхности, сменить смазку, заменить скольжение качением.
Вычисление силы выполняют по формуле: F = k * N. Здесь:
- F — сила;
- K — коэффициент;
- N — реакция опоры.
Приложенное сопротивление направлено в противоположную сторону движения, при этом реакция силы опоры происходит перпендикулярно площади соприкосновения. Коэффициент является безразмерной величиной и не зависит от размера контакта. Если энергия движения совпадает по величине с трением, тело движется равномерно по прямой. Если же движущая сила будет меньше, объект остановится.
Основная формула силы трения учитывает различные моменты, оказывающие влияние на перемещение. Но при этом, если при соприкосновении с вращением не будет проскальзывания, формула изменится. В ней главную роль будет играть прижимающее давление.
Качение тела
Из названия силы можно сделать вывод, что сила качения возникает, когда одно тело перекатывается по поверхности другого. Например, езда с использованием колеса, работа подшипника. По сути, это явление, происходящее из-за деформации катка и опорной поверхности. При этом полагается, что тяговых и тормозных процессов нет.
Из-за того, что трение качения в несколько раз меньше скольжения, оно является довольно распространённым видом перемещения. Например, груз катить легче, чем тянуть. Это происходит из-за меньшего количества контактов с поверхностью. При этом отталкиваться от твёрдого тела проще, чем от мягкого.
Для определения процесса физики используют следующее объяснение: пусть имеется тело, которое располагается на опоре. Относительно неё происходит вращение. В любой выбранный момент времени на вращающийся объект будет действовать момент сил. При этом векторная сумма их будет равняться нулю: N + P +Ro = 0. Действующий момент состоит из внешней силы (P), прижимной (N) и реакции опоры (Ro).
Если сумма векторов равняется нулю, ось симметрии находится в равномерном и прямолинейном движении или остаётся в одном положении (неподвижная). Другими словами, вектор силы трения качения противодействует перемещению. Следовательно, прижимной момент уравновешивается реакцией опоры, а, точнее, её вертикальной составляющей. Внешняя же сила находится в равновесии с горизонтальной составляющей.
Равномерность обозначает, что воздействующие моменты компенсируют друг друга. А значит, формула для описания процесса будет выглядеть как Ft * R = N * f, где Ft — сила трения качения. Из этой формулы можно найти силу: Ft = f * N /R. Рассматриваемое воздействие прямо пропорционально произведению коэффициента трения и прижимной силы, обратно пропорционально радиусу катящегося тела. Фактически это и есть определение трения качения.
Правильность формулы подтверждают различные экспериментальные измерения. Действительно, при малой скорости качения процесс не зависит от неё. Когда же скорость возрастает до величин сопоставимых с деформацией в опоре, сопротивление движению становится пропорциональным её росту и влияние оказывает уже скольжение.
Момент и коэффициент
Пусть имеется цилиндр, расположенный на идеальной гладкой жёсткой поверхности. Какую бы силу Q ни приложили, уравновесить её можно только противодействующей энергией. Если же такой энергии нет, под действием Q цилиндр должен катиться. Но опыты показывают совершенно другое. Например, если подойти к многотонному грузовику и попробовать его толкнуть, он не покатится. Хотя теория утверждает обратное.
Но здесь дело в том, что поверхность считается идеальной. В момент времени на тело, кроме Q, действует равное ей сцепление. Эти силы будут уравновешенными. В вертикальной же плоскости на тело действует нормаль (N) и противодействующая ей сила равновесия (P).
На самом деле при прикосновении тело деформируется. Образуется впадина, при этом колесо всей своей тяжестью будет опираться на крайнюю правую точку деформированной поверхности. Момент сил здесь будет следующим:
- P — вес колеса, направленный вниз;
- N — момент нормали противоположный P;
- Q — импульс качения.
Перемещению препятствует равновесие пары PN. При этом плечо пары будет половиной размера, то есть возникает момент сил трения. Определяют его как эн делённое на дельту и называют моментом трения: Mтр = N * d. Эта формула совпадает по форме записи с законом Амонтона — Кулона. И там, и тут фигурирует величина опоры.
Становится очевидным, что R * Q = Mтр = P * d. Используя эту запись, можно обнаружить предельный импульс, который необходимо приложить к колесу, чтобы заставить его двигаться: Q = p d /R. При этом если колесо будет скользить, а не катиться, Q будет уже зависеть от трения: Q = P * f.
При сравнении двух формул видно, что d / r будет намного меньше f, поэтому качение произойдёт раньше. Это свойство как раз и используется в подшипниках. Нахождение коэффициента трения можно выполнить через момент трения качения и давление прижима: f = Mтр / N.
Он определяется следующими физическими интерпретациями:
- f равна длине линии, соединяющей прямые, вдоль которых создаются нормаль и давление вниз;
- для неидеализированных случаев мгновенный центр вращения сдвинут в сторону качения тела, при этом значение смещения равно коэффициенту трения.
Для мягкого дерева, катящегося по стали, коэффициент составляет 0,8 мм, стали по асфальту — 6 мм, железа по граниту — 2,1 мм. Это справочная величина, установленная экспериментально, которую не нужно вычислять самостоятельно.
Решение задач
При решении задач нужно помнить, что трение кручения зависит не только от свойств материалов, участвующих в движении, но и от радиуса. При этом часто областью деформации пренебрегают, так как величина смятия ничтожно мала, поэтому нахождение по формуле силы трения через массу при качении не выполняют.
Алгоритм решения примеров:
- Условия задачи изображают на рисунке. На нём показывают направление возможного перемещения до момента наступления равновесия.
- На чертеже рисуют момент трения противоположно движению, указывают вектор сцепления, направленный вдоль поверхности.
- Используя метод представления системы в виде отдельных тел, заменяют связи реакциями.
- Решают уравнения равновесия. Для этого проекции цилиндрических тел берут вдоль нормальной оси, а уравнение моментов составляют относительно точки соприкосновения.
- Изменяют направление возможного перемещения системы и движения момента качения. Находят второе условие равновесия.
Например, имеются 2 цилиндра с одинаковыми радиусами: R = 50 см. Их вес составляет соответственно 20 и 30 ньютон. Они соединены стержнем массой 40 ньютон. Первый цилиндр катится без сопротивления, а второй испытывает трение d = 2 мм. К первому кольцу приложена пара моментов, а к оси второго — нагрузка в 10 ньютон. Определить пределы изменения момента в условиях равновесия.
Для решения задачи нужно воспользоваться формулой: Мтр = N2 * d. Систему можно разбить на 3 тела. Связи заменить реакциями Fc1, N1, Fc2, N2. Внутренние связи обозначить x1, y1, x2, y2. При составлении системы нужно избегать уравнений с реакциями F. Равновесие для первого цилиндра можно определить из системы:
- Y ц = Y1 + N1 — G1 = 0;
- M ц = = X1 * R — M = 0.
Для второго колеса:
- Yi = Y2 + N2 — G2 — F sin45 = 0;
- M ц 2 = — X2 * R — M тр + F cos45 * R= 0.
Для стержня:
- Xi = — x 1 — x 2 = 0;
- Yi = -y — y2 — G3 = 0;
- Ma = =x2 * AB * sin30 — Y2 * AB * cos30 — G3 (AB/2) * cos 30 = 0.
Из решения системы можно определить, что М = (√3R FR √2 — d (G3 + 2G2 + FV2)) / (R (√3+d)). Все вычисления нужно делать в метрах. Подставив значения, заданные условием, можно вычислить, что М = 3,414. Нормальные реакции будут равны: N = 36,058 Н, N2 = 61,013 Н. Аналогичные вычисления выполняют и при изменении направления возможного перемещения. В ответе должно получиться, что M = 3, 66 Нм, N1 = 35.8 Н, Т2 = 61,3 Н. Таким образом, предел будет лежать в области от 3,414 Нм до 3, 66 Нм.
Сила трения качения
4.2
Средняя оценка: 4.2
Всего получено оценок: 323.
4.2
Средняя оценка: 4.2
Всего получено оценок: 323.
Силы трения возникают при непосредственном контакте поверхностей двух твердых тел. Различают силы трения — покоя, скольжения и качения. Когда тело не скользит по поверхности другого тела, а катится, то в этом случае сопротивление оказывает сила трения качения. Трение качения в десятки раз меньше трения скольжения. Разберемся с механизмом возникновения этой силы.
Катить легче, чем тащить
В повседневной жизни мы пользуемся преимуществами качения практически ежедневно:
- Тяжелые, крупногабаритные предметы можно легко переместить, подложив под них круглые катки или трубы. Например, чтобы передвигать по асфальту чугунную болванку массой в 1 тонну, нужно приложить силу в 200 кгс — на такое способны только могучие силачи. А на тележке катить эту же болванку сможет даже ребенок, ведь для этого нужна сила не более 10 кгс;
- Все транспортные средства, перемещающиеся по поверхности земли, используют колеса;
- Для облегчения подъема тяжелых предметов на высоту с давних времен применяется блок, имеющий форму колеса;
- Роликовые и шариковые подшипники качения применяются во всех устройствах, когда требуется добиться минимального трения во вращающихся деталях.
Конечно, изобретение колеса — это одно из самых выдающихся достижений человеческой цивилизации.
Итак, сила трения качения — это сила, возникающая при качении тела по поверхности без проскальзывания. Существенным моментом в этом определении является исключение проскальзывания, потому что при проскальзывании трение возрастает в десятки раз!
Почему возникает сила трения качения
Круглый предмет (диск, шар, цилиндр) при качении слегка вдавливается в поверхность, образуя “ямку и бугорок”. Получается так, катящееся тело собственным весом создает себе препятствие (бугорок), и преодолевает его как бы вкатываясь все время в гору. При этом само тело тоже немного деформируется.
Вторая причина – сила сцепления (адгезия), возникающая между поверхностями в момент контакта. Адгезия возникает в результате межмолекулярного взаимодействия.
Чем тверже поверхность, по которой катится тело, тем меньше будет “ямка” (вдавливание) и, значит, меньше сила трения качения. Сопротивление качению меньше, чем трение скольжения, потому что площадь контакта обычно очень мала, и поэтому нормальная сила, придавливающая тело к поверхности, тоже мала и недостаточна, чтобы предотвратить движение тела.
Для железнодорожного транспорта, где колеса и рельсы стальные, трение при качении во много раз меньше, чем у грузовых автомобильных шин. Если бы само тело и поверхность были абсолютно твердыми, то сила трения была бы рана нулю.
От чего зависит и чему равна сила трения качения
Если круглое тело, например, колесо радиусом R катится по поверхности, то для формулы силы трения качения Ft справедливо следующее выражение:
$ F_t = N * {μover R} $ (1),
где:
N — прижимающая сила, Н;
μ — коэффициент трения качения, м/Н.
Из формулы следует, что Ft растет с ростом массы тела и уменьшается с увеличением радиуса колеса R. Это и понятно: чем больше колесо, тем меньшее значение имеют для него неровности поверхности (бугорки), по которой оно катится.
Коэффициент трения качения μ имеет размерность $[м/Н]$ в отличии от коэффициента трения скольжения k, который безразмерен.
Подшипники
Для снижения трения скольжения сначала была изобретена смазка, которая позволила добиться уменьшения трения в 8-10 раз. И только в конце ХIХ века возникла идея заменить в подшипнике трение скольжения трением качения. Эту замену осуществляют шариковые и роликовые подшипники. При вращении колеса или вала двигателя шарики (или ролики) катятся по втулке (обойме для шариков), а вал или ось колеса — по шарикам. Таким способом удалось снизить трение в десятки раз.
Что мы узнали?
Итак, мы узнали что представляет собой сила трения качения. Рассмотрели два основных механизма, вызывающих эту силу. Согласно формуле (1) сила трения качения растет с ростом веса тела и уменьшается с увеличением радиуса колеса. Роликовые и шариковые подшипники качения находят свое применение в большинстве устройств, имеющих вращающиеся детали.
Тест по теме
Доска почёта
Чтобы попасть сюда — пройдите тест.
-
Егор Князев
3/5
-
Александр Коновалов
5/5
Оценка доклада
4.2
Средняя оценка: 4.2
Всего получено оценок: 323.
А какая ваша оценка?
Трение — физическое явление, с которым человек борется с целью его уменьшения в любых вращающихся и скользящих частях механизмов, без которого, однако, невозможно движение ни одного из этих механизмов. В данной статье рассмотрим с точки зрения физики, что такое сила трения качения.
Какие виды сил трения существуют в природе?
В первую очередь рассмотрим, какое место трение качения занимает среди других сил трения. Эти силы возникают в результате контакта двух разных тел. Это могут быть тела твердые, жидкие или газообразные. Например, полет самолета в тропосфере сопровождается наличием трения между его корпусом и молекулами воздуха.
Вам будет интересно:Просодическая сторона речи — это… Описание, формирование, развитие
Рассматривая исключительно твердые тела, выделяют силы трения покоя, скольжения и качения. Каждый из нас замечал: чтобы сдвинуть с места коробок, находящийся на полу, необходимо вдоль поверхности пола приложить некоторую силу. Значение силы, которое выведет коробок из состояния покоя, будет по модулю равно силе трения покоя. Последняя действует между дном коробка и поверхностью пола.
Вам будет интересно:Порабощение — это действие против свободы личности
Как только коробок начал свое движение, необходимо прилагать постоянную силу, чтобы сохранять это движение равномерным. Связан этот факт с тем, что между контактом пола и коробком на последний действует сила трения скольжения. Как правило, она на несколько десятков процентов меньше, чем трение покоя.
Если под коробок положить круглые цилиндры из твердого материала, то перемещать его станет гораздо легче. На вращающиеся в процессе движения цилиндры под коробком будет действовать сила трения качения. Она обычно намного меньше предыдущих двух сил. Именно поэтому изобретение человечеством колеса стало огромным скачком в сторону прогресса, ведь люди получили возможность перемещать гораздо большие грузы с помощью небольшой приложенной силы.
Физическая природа трения качения
Почему возникает сила трения качения? Этот вопрос является непростым. Для ответа на него следует детально рассмотреть, что происходит с колесом и поверхностью в процессе качения. В первую очередь они не являются идеально гладкими — ни поверхность колеса, ни поверхность, по которой оно катится. Тем не менее это не основная причина появления трения. Главной же причиной является деформация одного или обоих тел.
Вам будет интересно:Виды территориального маркетинга. Субъекты и объекты территориального маркетинга
Любые тела, из какого бы твердого материала они ни состояли, деформируются. Чем больше вес тела, тем большее давление оно оказывает на поверхность, а значит, деформируется само в точке контакта и деформирует поверхность. Эта деформация в ряде случаев настолько мала, что не превышает предела упругости.
В процессе качения колеса деформированные участки после прекращения контакта с поверхностью восстанавливают исходную форму. Тем не менее эти деформации циклически повторяются с новым оборотом колеса. Любая циклическая деформация, даже если она лежит в пределе упругости, сопровождается гистерезисом. Иными словами, на микроскопическом уровне форма тела до и после деформации отличается. Гистерезис циклов деформации в процессе качения колеса приводит к «распылению» энергии, что проявляется на практике в виде появления силы трения качения.
Качение идеального тела
Под идеальным телом в данном случае имеется в виду то, что оно является недеформируемым. В случае идеального колеса площадь его контакта с поверхностью равна нулю (оно касается поверхности вдоль линии).
Охарактеризуем силы, которые действуют на недеформируемое колесо. Во-первых, это две вертикальные силы: вес тела P и сила реакции опоры N. Обе силы проходят через центр масс (ось колеса), поэтому в создании крутящего момента не принимают участия. Для них можно записать:
P = N
Во-вторых, это две горизонтальные силы: внешняя сила F, которая толкает колесо вперед (она проходит через центр масс), и сила трения качения fr. Последняя создает крутящий момент M. Для них можно записать такие равенства:
M = fr*r;
F = fr
Здесь r — радиус колеса. Эти равенства содержат очень важный вывод. Если сила трения fr будет бесконечно малой, то она все равно создаст крутящий момент, который приведет к движению колеса. Поскольку внешняя сила F равна величине fr, то любое бесконечно малое значение F приведет к качению колеса. Это означает, что если тело качения является идеальным и не испытывает деформации в процессе движения, то ни о какой силе трения качения говорить не приходится.
Все существующие тела являются реальными, то есть испытывают деформацию.
Качение реального тела
Теперь рассмотрим описанную выше ситуацию только для случая реальных (деформируемых) тел. Площадь касания колеса и поверхности уже не будет равна нулю, она будет иметь некоторое конечное значение.
Проведем анализ сил. Начнем с действия вертикальных сил, то есть веса и реакции опоры. Они по-прежнему равны друг другу, то есть:
N = P
Однако сила N теперь действует вертикально вверх не через ось колеса, а несколько смещена от нее на расстояние d. Если представить площадь соприкосновения колеса с поверхностью в виде площади прямоугольника, то длиной этого прямоугольника будет толщина колеса, а ширина будет равна 2*d.
Теперь перейдем к рассмотрению горизонтальных сил. Внешняя сила F по-прежнему не создает момента вращения и равна силе трения fr по абсолютной величине, то есть:
F = fr.
Момент сил, приводящий к вращению, будет создавать трение fr и реакцию опоры N. Причем эти моменты будут направлены в разные стороны. Соответствующее выражение имеет вид:
M = N*d — fr*r
В случае равномерного движения момент M будет равен нулю, поэтому получаем:
N*d — fr*r = 0 =>
fr = d/r*N
Последнее равенство с учетом записанных выше формул можно переписать так:
F = d/r*P
По сути, мы получили главную для понимания силы трения качения формулу. Далее в статье проведем ее анализ.
Коэффициент сопротивления качению
Этот коэффициент уже был введен выше. Также было дано геометрическое его объяснение. Речь идет о величине d. Очевидно, что чем больше эта величина, тем больший момент создает сила реакции опоры, который препятствует движению колеса.
Коэффициент сопротивления качению d, в отличие от коэффициентов трения покоя и скольжения, — величина размерная. Измеряется он в единицах длины. В таблицах его приводят обычно в миллиметрах. Например, для колес поезда, катящихся по стальным рельсам, d = 0,5 мм. Величина d зависит от твердости двух материалов, от нагрузки на колесо, от температуры и некоторых других факторов.
Коэффициент трения качения
Не нужно его путать с предыдущим коэффициентом d. Коэффициент трения качения обозначают символом Cr и вычисляют по следующей формуле:
Cr = d/r
Это равенство означает, что величина Cr является безразмерной. Именно она приводится в ряде таблиц, содержащих информацию о рассматриваемом виде трения. Этот коэффициент удобно использовать для практических расчетов, поскольку он не предполагает знания радиуса колеса.
Величина Cr в подавляющем большинстве случаев меньше, чем коэффициенты трения и покоя. Например, для автомобильных шин, движущихся по асфальту, величина Cr находится в пределах нескольких сотых (0,01 — 0,06). Однако она значительно возрастает при движении спущенных колес по траве и по песку (≈0,4).
Анализ полученной формулы для силы fr
Запишем еще раз полученную выше формулу силы трения качения:
F = d/r*P = fr
Из равенства следует, что чем больше диаметр колеса, тем меньшую силу F следует приложить, чтобы оно начало движение. Теперь запишем это равенство через коэффициент Cr, имеем:
fr = Cr*P
Как видно, сила трения прямо пропорциональна весу тела. Кроме того, при значительном увеличении веса P изменяется сам коэффициент Cr (он возрастает в виду увеличения d). В большинстве практических случаев Cr лежит в пределах нескольких сотых. В свою очередь, значение коэффициента трения скольжения лежит в пределах нескольких десятых. Поскольку для сил трения качения и скольжения формулы одинаковые, то качение оказывается выгодным с энергетической точки зрения (сила fr меньше на порядок силы скольжения в большинстве практических ситуаций).
Условие качения
Многие из нас встречались с проблемой проскальзывания колес автомобиля при движении по льду или по грязи. Почему это происходит? Ключ к ответу на этот вопрос лежит в соотношении абсолютных значений сил трения качения и покоя. Еще раз выпишем формулу для качения:
F ≥ Cr*P
Когда сила F будет больше или равна трению качения, тогда колесо начнет катиться. Однако если эта сила раньше превзойдет величину трения покоя, то раньше наступит проскальзывание колеса, чем его качение.
Таким образом, эффект проскальзывания определяется соотношением коэффициентов трения покоя и трения качения.
Способы противодействия проскальзыванию колеса автомобиля
Трение качения колеса автомобиля, находящегося на скользкой поверхности (например, на льду) характеризуется коэффициентом Cr = 0,01-0,06. Однако значения такого же порядка характерны для коэффициента трения покоя.
Чтобы избежать риска проскальзывания колеса, используют специальную «зимнюю» резину, в которую вкручены металлические шипы. Последние, врезаясь в ледяную поверхность, увеличивают коэффициент трения покоя.
Другой способ увеличение трения покоя заключается в модификации поверхности, по которой движется колесо. Например, с помощью посыпания ее песком или солью.
Сила трения качения — сила сопротивления движению, возникающая при перекатывании тел друг по другу
Пусть на тело вращения, располагающееся на опоре, действуют: P — внешняя сила, пытающаяся привести тело в состояние качения или поддерживающая качение и направленная вдоль опоры, N — прижимающая сила и Rp — сила реакции опоры.
Если векторная сумма этих сил равна нулю, то ось симметрии тела движется равномерно и прямолинейно или остаётся неподвижной.
Вектора Ft и P равны по модулю и противоположны по направлению.
Вектор Ft определяет силу трения качения, противодействующую движению. Это означает, что прижимающая сила уравновешивается вертикальной составляющей реакции опоры, а внешняя сила уравновешивается горизонтальной составляющей реакции опоры.
Ft·R=N·f
Отсюда сила трения качения равна:
Происхождение трения качения можно наглядно представить себе так. Когда шар или цилиндр катится по поверхности другого тела, он немного вдавливается в поверхность этого тела, а сам немного сжимается. Таким образом, катящееся тело все время как бы вкатывается на горку. Вместе с тем происходит отрыв участков одной поверхности от другой, а силы сцепления, действующие между этими поверхностями, препятствуют этому. Оба эти явления и вызывают силы трения качения. Чем тверже поверхности, тем меньше вдавливание и тем меньше трение качения.
Обозначения:
Ft — сила трения качения
f — коэффициент трения качения, имеющий размерность длины (м) (следует отметить важное отличие от коэффициента трения скольжения μ, который безразмерен)
R — радиус тела
N — прижимающая сила
P — внешняя сила, пытающаяся привести тело в состояние качения или поддерживающая качение и направленная вдоль опоры;
Rp — реакция опоры.
Трением качения называется локальное сопротивление, возникающее при качении одного тела по другому, которое обусловлено деформациями этих тел в зоне их контакта (рисунок 28).
На рисунке 28 показано два разных состояния одного и того же катка. Слева изображен каток в состоянии покоя.
Рисунок 28
Удельное давление на контактной площадке (которая образуется в результате деформации контактирующих звеньев) распределяется симметрично (по теории Герца – по эллиптическому закону) относительно линии действия приложенной нагрузки. В результате нормальная реакция совпадает с линией действия внешней силы и уравновешивает ее.
Справа каток движется под действием силы F, приложенной к катку на некотором плече h. Происходит перераспределение деформации таким образом, что впереди катка (по ходу движения) образуется волна деформации.
Эпюра удельного давления трансформируется и нормальная реакция смещается вперед по ходу движения катка на величину k, создавая момент сопротивления. Этот момент сопротивления называется моментом силы трения качения, плечо k – коэффициентом трения качения.
Формула для определения момента трения качения аналогична формуле для определения силы трения в поступательной паре (коэффициент трения качения, как и коэффициент трения скольжения, является справочным материалом – определяется экспериментально). Однако надо помнить, что коэффициент трения качения величина размерная – имеет линейную размерность (м, см, мм).
В высшей кинематической паре возможно не только качение одного звена по поверхности другого, но и относительное скольжение соприкасающихся поверхностей. Поэтому представляет интерес условие, при котором будет происходить тот или иной процесс.
Для того чтобы звено катилось, движущий момент должен быть больше момента сопротивления (или равен ему). В данном случае в качестве момента сопротивления выступает момент трения качения:
Для того чтобы звено скользило вдоль поверхности второго, движущая сила должна быть больше силы трения скольжения (или равна ей):
Звено будет двигаться по пути наименьшего сопротивления. Поэтому будет происходить чистое качение, если:
Соответственно условие чистого скольжения:
При k/h = f происходит неопределенное движение (одновременное качение со скольжением).
Если движущая сила приложена в центре катка, то вместо плеча h надо подставить радиус катка r.
Видно, что с уменьшением радиуса резко возрастает сопротивление качению и, с большей вероятностью, под действием движущей силы каток будет скользить (поэтому колеса транспортных машин, требующих значительной проходимости в любую погоду, – колесные трактора, вездеходы, «внедорожники» – имеют большой диаметр).
Энергетический баланс машины >
Курсовой проект по ТММ >
Сохранить или поделиться с друзьями
Вы находитесь тут:
На нашем сайте Вы можете получить решение задач и онлайн помощь
Подробнее