Как найти количество теплоты выделяющейся при неупругом

Условие задачи:

Найти количество теплоты, выделившееся при лобовом абсолютно неупругом ударе двух свинцовых шаров массой 1 кг каждый, скользящих без вращения по абсолютно гладкой поверхности. До удара шары двигались по одной прямой в одном направлении. Скорость первого шара равна 10 см/с, скорость второго – 20 см/с.

Задача №2.10.3 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

(m=1) кг, (upsilon_1=10) см/с, (upsilon_2=20) см/с, (Q-?)

Решение задачи:

Схема к решению задачиЗапишем два закона:

  • закон сохранения импульса (ЗСИ) в проекции на ось (x), поскольку система, состоящая из двух шаров замкнута в этом направлении;
  • закон сохранения энергии (ЗСЭ), но учтем, что часть начальной кинетической энергии шаров при абсолютно неупругом ударе переходит в теплоту (Q).

[left{ begin{gathered}
m{upsilon _1} + m{upsilon _2} = 2mu hfill \
frac{{mupsilon _1^2}}{2} + frac{{mupsilon _2^2}}{2} = frac{{2m{u^2}}}{2} + Q hfill \
end{gathered} right.]

Из ЗСИ выразим скорость шаров после удара:

[u = frac{{{upsilon _1} + {upsilon _2}}}{2}]

Полученное выражение подставим в ЗСЭ:

[frac{{mupsilon _1^2}}{2} + frac{{mupsilon _2^2}}{2} = frac{{2m}}{2}{left( {frac{{{upsilon _1} + {upsilon _2}}}{2}} right)^2} + Q]

Раскроем квадрат суммы в правой части уравнения:

[frac{{mupsilon _1^2}}{2} + frac{{mupsilon _2^2}}{2} = frac{{2m}}{2}left( {frac{{upsilon _1^2 + 2{upsilon _1}{upsilon _2} + upsilon _2^2}}{4}} right) + Q]

Откроем скобки:

[frac{{mupsilon _1^2}}{2} + frac{{mupsilon _2^2}}{2} = frac{{mupsilon _1^2}}{4} + frac{{m{upsilon _1}{upsilon _2}}}{2} + frac{{mupsilon _2^2}}{4} + Q]

[Q = frac{{mupsilon _1^2}}{4} – frac{{m{upsilon _1}{upsilon _2}}}{2} + frac{{mupsilon _2^2}}{4} = frac{m}{4}left( {upsilon _1^2 – 2{upsilon _1}{upsilon _2} + upsilon _2^2} right)]

[Q = frac{m}{4}{left( {{upsilon _1} – {upsilon _2}} right)^2}]

Получилась “красивая” формула для расчета ответа. Переведем скорости в единицы системы СИ.

[10; см/с = frac{{10}}{{100}}; м/с = 0,1; м/с]

[20; см/с = frac{{20}}{{100}}; м/с = 0,2; м/с]

Считаем ответ:

[Q = frac{1}{4}{left( {0,1 – 0,2} right)^2} = 2,5 cdot 10^{-3}; Дж = 2,5; мДж]

Ответ: 2,5 мДж.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Смотрите также задачи:

2.10.2 Тележка массой 100 кг движется со скоростью 2 м/с. Когда она проезжает мимо
2.10.4 Охотник стреляет из ружья. Определить силу отдачи, если масса дроби 35 г
2.10.5 Шары массами 1 и 2 кг движутся навстречу друг другу. Скорость первого шара 5 м/с

Начиная с определений импульса и объяснения законов сохранения, в статье показывается способ решения ряда задач, в которых важно только начальное и конечное состояние (но, например, ничего нельзя сказать про время движения), в частности, задач на столкновение тел.

Введение

С помощью законов сохранения многие механические задачи решаются намного проще, чем при использовании динамических уравнений движений. С другой стороны, законами сохранения можно пользоваться только в тех случаях, когда необходимо, зная начальное состояние тела, найти конечное. При данном описании системы невозможно узнать время движения тела и все промежуточные состояния.

Для лучшего понимания темы различных соударений давайте еще раз повторим теорию по законам сохранения в механике.

Самыми распространенными законами сохранения является закон сохранения импульса и энергии.

Импульс

Определение. Импульсом p тела (материальной точки) называется векторная физическая величина, равная произведению массы m на скорость (здесь и далее жирным шрифтом выделены векторные величины).

p = mv.

Изменение импульса можно представить через второй закон Ньютона:

Δp = mΔv = FΔt

Если рассмотреть систему материальных точек, которые движутся с разными скоростями, то импульс задается следующим выражением:

p = mv+ mv + 

Закон сохранения импульса

При отсутствии внешних сил импульс системы материальных точек сохраняется.

Замечание 1. Отсутствие внешних сил означает, что система замкнута.

Замечание 2. Часто в задачах есть внешние силы, но при этом законом сохранения импульса в каком-то виде пользоваться можно.

  1. Внешние силы есть, но они взаимно скомпенсированы (например сила тяжести и сила нормальной реакции опоры при движении по гладкой поверхности).
  2. Внешние силы не имеют проекции на какую-то заданную ось (например, ось ОX), тогда импульс может сохраняться вдоль этого направления.
  3. Если в некоторый момент времени внутренние силы много больше внешних, тогда импульс системы сохраняется (например, разрыв снаряда)

Так как задачи только на закон сохранения достаточно однообразные, то рассмотрим и закон сохранения энергии.

Работа и энергия

Любая механическая система характеризуется скалярной величиной E — энергией, которая однозначно определяет состояние системы. Зная энергию системы в двух состояниях, можно найти работу внешних сил, совершенную над системой:

ΔE = E₂ – E₁ = A.

Механическая работа

Определение. Если на тело, движущееся по прямой, действует постоянная сила F, то механической работой A этой силы на перемещение называется скалярное произведение

A = (F, s) = |F||s· cos(α) = Fs · cos(α),

где α — угол между векторами F и s.

Определение. Средняя мощность <P> силы  это отношение работы А, совершенной силой за время t, к интервалу времени t.

<P> = A / t.

Мощность также можно переписать так: <P> = Fv · cos(α).

Консервативные и диссипативные силы

Определение.Консервативные силы (потенциальные силы) —это силы, работа которых при перемещении из состояния 1 в состояние 2 не зависит от траектории, а зависит только от начального и конечного положения точек 1 и 2.

Примеры.Работа силы тяжести или электростатических сил не зависит от траектории, следовательно, это консервативные силы.

К диссипативным силам относятся различные виды силы трения.

Замечание. Работа диссипативных сил всегда отрицательна. Следовательно, они уменьшают механическую энергию тела, переводя ее в тепло.

Кинетическая и потенциальная энергия

Определение. Кинетическая энергия тела равна произведению массы тела на квадрат скорости, деленное на два:

Eкин = mv² / 2.

Так как работа консервативных сил зависит только от начального и конечного положения, то для нее можно определить потенциальную энергию.

Потенциальная энергия для силы тяжести определяется следующим выражением:

Eпот = mgh.

Замечание. Для силы тяжести можно легко вывести потенциальную энергию, зная работу силы притяжения.

Другие примеры.Зная силу растяжения или сжатия пружины, легко посчитать потенциальную энергию сжатой (растянутой) пружины:

Eпот = k(x₂ – x₁)² / 2.

Закон сохранения и изменения энергии

Формулировка. Механическая энергия в замкнутой системе сохраняется при отсутствии диссипативных сил:

ΔE = 0

Замечание 1. Механической энергией называется сумма потенциальной и кинетической энергии.

E = Eкин + Епот.

Замечание 2.При наличии консервативных сил может меняться скорость тела (системы тел) и их общая кинетическая энергия, но это будет происходить за счет перехода кинетической энергии в потенциальную.

Формулировка. Изменение механической энергии под действием внешних и внутренних неконсервативных сил равно суммарной работе этих сил А:

ΔE = A.

Теорема об изменении кинетической энергии

Формулировка. Работа всех сил (консервативных и диссипативных) равна изменению кинетической энергии системы.

A = ΔEкин.

Замечание. С помощью этой теоремы легко решать многие задачи. Например, рассмотрим задачу о нахождении тормозного пути автомобиля, движущегося со скоростью v = 60 км/ч по дороге с коэффициетом трения μ = 0,5.

Работа силы трения:

A = –μN = –μmgS,

где N — сила нормальной реакции, S — тормозной путь автомобиля.

Изменение кинетической энергии:

ΔE = –mv² / 2.

По теореме о изменении кинетической энергии:

–mv² / 2 = –μmgS.

S = v² / 2gμ = 29 м

Замечание.Скорость необходимо перевести в СИ.

Соударения

Определение. Центральный удар — это соударение 2 тел , при котором скорости каждого из тел направлены вдоль линии, соединяющей центры обоих тел.

Замечание. Если один из шаров покоится, то скорость второго тела должна быть направлена вдоль линии, соединяющей центры тел.

При решении задач на столкновение двух и более тел надо привыкнуть к следующим формулировкам:

  1. Абсолютно упругий удар (упругий удар) — это тип соударения, при котором выполняется закон сохранения энергии и закон сохранения импульса. Часто этот тип соударения применим к железным шарикам.
  2. Неупругий удар — это удар, при котором выполняется закон сохранения импульса и закон изменения механической энергии (так как теряется часть энергии при ударе).
  3. Абсолютно неупругий удар — это удар, при котором два тела продолжают двигаться как единое целое. При этом столкновении выполняется закон сохранения импульса и закон изменения механической энергии.

Замечание. Как мы видим, для решения задач нужно сначала записать соответствующие законы сохранения энергии и импульса или изменения энергии. Далее необходимо решить получившуюся систему уравнений.

Задача 1

Железный шар массы m = 500 г движется по гладкой горизонтальной поверхности со скоростью 10 м/с и сталкивается с неподвижным восковым шаром, имеющим массу М = 200 г, после чего оба шара движутся вместе. Найдите количество теплоты, выделившееся при ударе.

Решение. В этой задаче удар абсолютно неупругий, поэтому выполняется закон сохранения импульса (ЗСИ) и изменения энергии.

Запишем ЗСИ на ось OX:

mv = (m + M)V. (1)

Соударения. Часть 1, изображение №1

Для того, чтобы найти выделившуюся энергию при соударении, необходимо записать закон изменения энергии (ЗИЭ)

ΔE = mv² / 2 — (m + M)V² / 2. (2)

Далее остается только математическая часть задачи — решить систему уравнений (1) и (2). Из (1) найдем V:

V = mv / (M + m).

Подставив в (2), получим:

Соударения. Часть 1, изображение №2

Замечание. Такую задачу невозможно решить для неупругого удара, при котором тела не слипаются друг с другом, так как нам будет неизвестны скорости двух разлетевшихся тел.

Список литературы

  1. Белолипецкий С. Н., Еркович О. С., Казаковцева В. А., Цвецинская Т. С. Задачник по физике. М., 2005.
  2. Черноуцан А. Учебно-справочное пособие для старшеклассников и абитуриентов. М., 2000.
  • Печать

Страницы: 1 2 [3] 4 5 7

Тема: Законы сохранения из сборника Савченко Н.Е.  (Прочитано 91393 раз)

0 Пользователей и 2 Гостей просматривают эту тему.

226. На невесомом стержне длиной l = 75 см укреплены два одинаковых шара массой m каждый. Один шар укреплен на конце стержня, другой — посередине (рис. 1). Стержень может колебаться в вертикальной плоскости вокруг точки А. Какую горизонтальную скорость нужно сообщить нижнему концу стержня, чтобы стержень отклонился до горизонтального положения?

Решение. Задачу решим, используя закон сохранения энергии. За нулевую высоту примем высоту, на которой находится нижний шарик (рис. 2).
Полная механическая энергия двух тел в начальном состоянии. Если сообщить скорость υ1 нижнему шарику, то верхний шарик также будет иметь некоторую скорость υ2. Найдем эту скорость (υ2). Так как шарики закреплены на одном стержне, то при движении стержня (по дуге) у них будет одинаковые угловые скорости, т.е.

ω1 = ω2 или υ1/R1 = υ2/R2,

где R1 = l, R2 = l/2 (второй шарик посередине). Поэтому

υ1/l = 2υ2/l, υ2 = υ1/2.

Тогда

[ W_{0} = m cdot gcdot h_{1} +frac{m cdot upsilon _{1}^{2}}{2} + frac{m cdot upsilon _{2}^{2}}{2} = m cdot g cdot h_{1} + frac{m cdot upsilon _{1}^{2}}{2} + frac{m cdot upsilon _{1}^{2}}{8} = m cdot g cdot h_{1} + frac{5m cdot upsilon _{1}^{2}}{8}, ]

где h1 = l/2.

Полная механическая энергия тела в конечном состоянии

W = 2m⋅g⋅h2,

где h2 = l.
Так как на систему не действует внешняя сила, то выполняется закон сохранения механической энергии:

[ mcdot gcdot h_{1} + frac{5m cdot upsilon _{1}^{2}}{8} = 2m cdot gcdot h_{2}, ; ; ; g cdot frac{l}{2} + frac{5 upsilon _{1}^{2}}{8} = 2g cdot l, ]

[ frac{5upsilon _{1}^{2}}{8} = frac{3g cdot l}{2}, ; ; ; upsilon_{1} = sqrt{frac{12g cdot l}{5}} ],

υ1 = 4,2 м/с.


Записан


227. Шарик подвешен на невесомом прямом стержне длиной l. Какую минимальную скорость в горизонтальном направлении необходимо сообщить шарику, чтобы он сделал полный оборот в вертикальной плоскости?

Примечание. Для груза на жестком стержне минимальная скорость груза (υ0) в нижней точке соответствует случаю, когда верхняя точка проходится им со скоростью чуть больше нуля, т.е. υ ≈ 0.
Решение. Задачу решим, используя закон сохранения энергии. За нулевую высоту примем нижнюю точку окружности (рис. 1).
Полная механическая энергия тела в начальном состоянии

[ W_{0} = frac{m cdot upsilon _{0}^{2}}{2}. ]

Полная механическая энергия тела в конечном состоянии

W = m⋅g⋅h = 2m⋅g⋅l.

Так как на систему не действует внешняя сила, то выполняется закон сохранения механической энергии:

[ frac{m cdot upsilon _{0}^{2}}{2} = 2m cdot g cdot l, , , , upsilon _{0} = sqrt{4g cdot l} = 2 cdot sqrt{g cdot l}. ]


Записан


228. Найти количество теплоты, которое выделилось при абсолютно неупругом соударении двух шаров, двигавшихся навстречу друг другу. Масса первого шара m1 = 0,4 кг, его скорость υ1 = 3 м/с. Масса второго шара m2 = 0,2 кг, скорость υ2 = 12 м/с.

Решение. При неупругом ударе выделяется количество теплоты, равное

Q = W0W.

Найдем энергии W0 и W. За нулевую высоту примем высоту поверхности, по которой двигаются шары.
Полная механическая энергия тел в начальном состоянии

[ W_{0} =frac{m_{1} cdot upsilon _{1}^{2}}{2} + frac{m_{2} cdot upsilon_{2}^{2}}{2}. ]

Полная механическая энергия тел в конечном состоянии

[ W = frac{left(m_{1} + m_{2} right)cdot upsilon ^{2}}{2},;;; (1) ]

где υ — скорость шаров после столкновения.
Так как удар неупругий, то выполняется закон сохранения импульса. Воспользуемся им для нахождения скорости шаров υ после столкновения (рис. 1):

[ m_{1} cdot vec{upsilon }_{1} + m_{2} cdot vec{upsilon }_{2} = left(m_{1} + m_{2} right) cdot vec{upsilon}, ]

0Х: m1⋅υ1m2⋅υ2 = (m1 + m2)⋅υх.

Тогда

[ upsilon _{x} = frac{m_{1} cdot upsilon _{1} -m_{2} cdot upsilon _{2} }{m_{1} +m_{2} } . ]

После подстановки в уравнение (1) получаем

[ W=frac{m_{1} +m_{2}}{2} cdot left(frac{m_{1} cdot upsilon _{1} -m_{2} cdot upsilon _{2} }{m_{1} + m_{2}} right)^{2} = frac{left(m_{1} cdot upsilon _{1} -m_{2} cdot upsilon _{2} right)^{2}}{2cdot left(m_{1} +m_{2} right)}.
 ]

Количество теплоты, которое выделится при неупругом ударе шаров, будет равно (подробнее смотри рис. 2)

[ Q = frac{m_{1} cdot upsilon _{1}^{2}}{2} + frac{m_{2} cdot upsilon _{2}^{2}}{2} -frac{left(m_{1} cdot upsilon _{1} -m_{2} cdot upsilon _{2} right)^{2}}{2 cdot left(m_{1} + m_{2} right)} = frac{m_{1} cdot m_{2} cdot left(upsilon _{1} + upsilon _{2} right)^{2}}{2 cdot left(m_{1} + m_{2} right)}, ]

Q = 15 Дж.


Записан


229. Брусок массой m1 движется по гладкой горизонтальной поверхности со скоростью υ1. Пуля массой m2, летевшая в горизонтальном направлении со скоростью υ2, застревает в бруске. Угол между векторами υ1 и υ2 α = 90°. Определить, какое количество теплоты выделилось в бруске.

Решение. При неупругом ударе выделяется количество теплоты, равное

Q = W0W.

Найдем энергии W0 и W. За нулевую высоту примем высоту поверхности, по которой двигается брусок.
Полная механическая энергия тел в начальном состоянии

[ W_{0} =frac{m_{1} cdot upsilon _{1}^{2}}{2} + frac{m_{2} cdot upsilon_{2}^{2}}{2}.
 ]

Полная механическая энергия тел в конечном состоянии

[ W = frac{left(m_{1} + m_{2} right)cdot upsilon ^{2}}{2},;;; (1) ]

где υ — скорость бруска и пули после столкновения.
Так как удар неупругий, то выполняется закон сохранения импульса. Воспользуемся им для нахождения скорости υ бруска с пулей после столкновения (рис. 1):

[ m_{1} cdot vec{upsilon }_{1} + m_{2} cdot vec{upsilon }_{2} = left(m_{1} + m_{2} right) cdot vec{upsilon}, ]

0Х: m1⋅υ1 = (m1 + m2)⋅υх,

0Y: m2⋅υ2 = (m1 + m2)⋅υy.

Тогда

[ upsilon ^{2} = upsilon _{x}^{2} +upsilon _{y}^{2} =left(frac{m_{1} cdot upsilon _{1} }{m_{1} +m_{2}} right)^{2} +left(frac{m_{2} cdot upsilon _{2}}{m_{1} +m_{2} } right)^{2} =frac{left(m_{1} cdot upsilon _{1} right)^{2} +left(m_{2} cdot upsilon _{2} right)^{2} }{left(m_{1} +m_{2} right)^{2}}. ]

После подстановки в уравнение (1) получаем

[ W = frac{m_{1} +m_{2}}{2} cdot frac{left(m_{1} cdot upsilon _{1} right)^{2} +left(m_{2} cdot upsilon _{2} right)^{2}}{left(m_{ 1} +m_{2} right)^{2}} = frac{left(m_{1} cdot upsilon _{1} right)^{2} +left(m_{2} cdot upsilon _{2} right)^{2}}{2cdot left(m_{1} +m_{2} right)}. ]

Количество теплоты, которое выделится при неупругом ударе шаров, будет равно (подробнее смотри рис. 2)

[ Q = frac{m_{1} cdot upsilon _{1}^{2}}{2} +frac{m_{2} cdot upsilon _{2}^{2}}{2} -frac{left(m_{1} cdot upsilon _{1} right)^{2} + left(m_{2} cdot upsilon _{2} right)^{2}}{2cdot left(m_{1} +m_{2} right)} = frac{m_{1} cdot m_{2} cdot left(upsilon _{1}^{2} +upsilon _{2}^{2} right)}{2 cdot left(m_{1} +m_{2} right)}. ]


Записан


231. Шар массой m1, движущийся со скоростью υ10 по горизонтальной поверхности, сталкивается с неподвижным шаром массой m2. Между шарами происходит абсолютно упругий центральный удар. Определить скорости шаров после удара.

Решение. При абсолютно упругом ударе выполняются законы сохранения и импульса системы, и ее механической энергии. За нулевую высоту примем высоту поверхности, по которой двигаются шары.
Запишем оба закона сохранения и учтем, что после упругого удара второй шар начнет двигаться вправо (рис. 1):

0X: m1⋅υ10 = m1⋅υ1x + m2⋅υ2,

[ frac{m_{1} cdot upsilon _{10}^{2} }{2} =frac{m_{1} cdot upsilon _{1x}^{2} }{2} +frac{m_{2} cdot upsilon _{2}^{2}}{2}.
 ]

Получили систему двух уравнений с двумя неизвестными (υ1x и υ2). Решим ее. Например

[ upsilon _{1x} = frac{m_{1} cdot upsilon _{10} -m_{2} cdot upsilon _{2} }{m_{1}}, , , , m_{1} cdot upsilon _{10}^{2} = m_{1} cdot frac{left(m_{1} cdot upsilon _{10} -m_{2} cdot upsilon _{2} right)^{2}}{m_{1}^{2}} +m_{2} cdot upsilon _{2}^{2},
 ]

υ2 = 0 м/с или

[ upsilon _{2} =frac{2m_{1} cdot upsilon _{10}}{m_{1} +m_{2}}. ]

Подробнее решение смотри рис. 2.
Первый ответ (υ2 = 0 м/с) при упругом ударе невозможен.
Найдем скорость первого шара:

[ upsilon _{1x} =frac{1}{m_{1}} cdot left(m_{1} cdot upsilon _{10} -m_{2} cdot frac{2m_{1} cdot upsilon _{10}}{m_{1} +m_{2}} right)=frac{left(m_{1} +m_{2} right)cdot upsilon _{10} -2m_{2} cdot upsilon _{10}}{m_{1} +m_{2}} =frac{left(m_{1} -m_{2} right)cdot upsilon _{10}}{m_{1} +m_{2}}. ]

Если проекция скорости υ1x > 0, то первый шар будет двигаться вдоль оси 0Х, т.е. продолжать двигаться в ту же сторону, если υ1x < 0, то первый шар начнет двигаться в обратную сторону.


Записан


232. Самолет пикирует вертикально вниз с высоты h1 = 1,5 км до высоты h2 = 500 м. Его начальная скорость υ1 = 360 км/ч, а при выходе из пике υ2 = 540 км/ч. Найти силу сопротивления воздуха, считая ее постоянной. Масса самолета m = 2,0 т, двигатель самолета не работает. Ускорение свободного падения g считать равным 10 м/с2.

Решение. Задачу решим, используя закон сохранения энергии. За нулевую высоту примем поверхность Земли.
Полная механическая энергия самолета в начальном состоянии

[ W_{0} = frac{m cdot upsilon_{1}^{2}}{2} +m cdot g cdot h_{1}.;;; (1) ]

Полная механическая энергия тела в конечном состоянии

[ W = frac{m cdot upsilon_{2}^{2}}{2} +m cdot g cdot h_{2}.;;; (2) ]

На самолет действует внешняя сила Fc — сила сопротивления воздуха. Работа этой силы равна

Av = Fc⋅Δr⋅cos α, (3)

где Δr = h1h2, α = 180° (т.к. сила сопротивления направлена в противоположную сторону скорости движения).
Запишем закон изменения механической энергии

Аv = W – W0.

Распишем данное выражение с учетом уравнений (1)-(3)

[ -F_{c} cdot left(h_{1} — h_{2} right) = left(frac{m cdot upsilon_{2}^{2}}{2} +m cdot g cdot h_{2} right)-left(frac{mcdot upsilon _{1}^{2}}{2} +m cdot g cdot h_{1} right) = mcdot left(frac{upsilon _{2}^{2} -upsilon _{1}^{2}}{2} -gcdot left(h_{1} -h_{2} right)right),
 ]

 [ F_{c} = mcdot left(g-frac{upsilon_{2}^{2} -upsilon_{1}^{2}}{2 cdot left(h_{1} -h_{2} right)} right), ]

Fc = 7,5⋅103 Н.


Записан


233. Камень брошен под углом к горизонту с высоты H с начальной скоростью υ0. С какой скоростью камень упадет на поверхность земли? Решить без применения кинематических уравнений. Сопротивление воздуха не учитывать.

Решение. Задачу решим, используя закон сохранения энергии. За нулевую высоту примем поверхность земли (рис. 1).
Полная механическая энергия тела в начальном состоянии

[ W_{0} =frac{m cdot upsilon _{0}^{2}}{2} +m cdot g cdot H. ]

Полная механическая энергия тела в конечном состоянии

[ W = frac{m cdot upsilon ^{2}}{2}. ]

Так как на систему не действует внешняя сила (сопротивление воздуха не учитывать), то выполняется закон сохранения механической энергии

[ frac{m cdot upsilon _{0}^{2}}{2} +m cdot gcdot H=frac{mcdot upsilon ^{2}}{2}, , , , frac{upsilon ^{2}}{2} = frac{upsilon _{0}^{2}}{2} + g cdot H, , , , upsilon = sqrt{upsilon _{0}^{2} +2g cdot H}.
 ]


Записан


234. Пуля, летящая со скоростью υ0, пробивает несколько одинаковых досок, расположенных на некотором расстоянии друг от друга. В какой по счету доске пуля застрянет, если ее скорость после прохождения первой доски υ1 = 0,8υ0?

Решение. Задачу решим, используя закон сохранения энергии. За нулевую высоту примем высоту, на которой находится пуля, поэтому Wp0 = Wp = 0.

Рассмотрим вначале случай, когда пуля проходит через одну доску.
Полная механическая энергия тела в начальном состоянии

W0 = m⋅υ02/2.

Полная механическая энергия тела в конечном состоянии

W = m⋅υ12/2.

На пулю действует внешняя сила Fc – сила сопротивления доски. Работа этой силы равна

Av = Fc⋅Δr⋅cos α,

где Δr = d — толщина доски, α = 180° (т.к. сила сопротивления направлена в противоположную сторону скорости движения пули).
Запишем закон изменения механической энергии

Аv = W – W0,

или

[ -F_{c} cdot d=frac{m cdot upsilon _{1}^{2} }{2} -frac{m cdot upsilon _{0}^{2}}{2}, ; ; ; F_{c} = frac{m}{2d} cdot left(upsilon _{0}^{2} -upsilon _{1}^{2} right).;;; (1) ]

Рассмотрим теперь случай, когда пуля проходит через N досок и застревает в последней.
Полная механическая энергия тела в начальном состоянии

W0 = m⋅υ02/2.

Полная механическая энергия тела в конечном состоянии

W = 0.

Работа силы сопротивления всех досок равна

Av2 = –Fc⋅N⋅d,

где Fc найдем из уравнения (1).
Запишем закон изменения механической энергии

Аv2 = W – W0,

или

[ -F_{c} cdot Ncdot d = -frac{m cdot upsilon _{0}^{2}}{2}, ; ; ; N = frac{m cdot upsilon _{0}^{2}}{2dcdot F_{c}} = frac{m cdot upsilon _{0}^{2} cdot 2d}{2d cdot m cdot left(upsilon _{0}^{2} -upsilon _{1}^{2} right)} = frac{upsilon _{0}^{2}}{upsilon _{0}^{2} -upsilon _{1}^{2}}, ]

[ N = frac{upsilon _{0}^{2}}{upsilon _{0}^{2} -0,64upsilon _{0}^{2}} = frac{1}{0,36} = 2,8. ]

Ответ. В третьей доске.


Записан


235. Пуля массой m, летящая горизонтально со скоростью υ, попадает в ящик с песком массой M, подвешенный на жестком невесомом стержне длиной l, который шарнирно укреплен за верхний конец («баллистический маятник»), и застревает в нем. Стержень может вращаться вокруг горизонтальной оси, перпендикулярной направлению скорости пули. Пренебрегая размерами ящика, определить максимальный угол отклонения стержня от вертикали.

Решение. Так как пуля застревает в ящике, то применять сразу закон сохранения энергии нельзя. Рассмотрим вначале процесс столкновения пули и ящика (неупругий удар), затем движение системы ящик-пуля на стержне.
Процесс столкновения пули и ящика (рис. 1). Так как удар неупругий, то для нахождения скорости системы ящик-пуля воспользуемся законом сохранения импульса:

[ mcdot vec{upsilon } = left(m+M right) cdot vec{upsilon }_{1}, ]

0Х: m⋅υ = (m + M)⋅υ1

или

[ upsilon _{1} = frac{m cdot upsilon }{m+M}. ]  (1)

Процесс движения системы ящик-пуля на стержне. Силой сопротивления, по умолчанию, пренебрегаем, поэтому теперь можем применять закон сохранения энергии. За нулевую высоту примем высоту, на которой находится ящик в нижнем положении (рис. 2).
Полная механическая энергия системы ящик-пуля в начальном состоянии (с учетом уравнения (1))

[ W_{0} = frac{left(m+Mright) cdot upsilon _{1}^{2}}{2} = frac{m+M}{2} cdot left(frac{m cdot upsilon }{m+M} right)^{2} = frac{m^{2} cdot upsilon ^{2}}{2cdot left(m+Mright)}. ]

Полная механическая энергия системы ящик-пуля в конечном состоянии. Максимальный угол α отклонения стержня от вертикали будет в тот момент, когда система достигнет максимальной высоты и их скорость υ2 = 0, т.е.

W = (m + M)⋅g⋅h,

где h = AB = OB – OA = l – l⋅cos α = l⋅(1 – cos α).

Из закона сохранения механической энергии следует, что

[ frac{m^{2} cdot upsilon ^{2}}{2 cdot left(m+Mright)} = left(m+M right) cdot g cdot l cdot left(1-cos alpha right), , , , 1-cos alpha = frac{m^{2} cdot upsilon ^{2}}{2 cdot left(m+M right)^{2} cdot g cdot l}, ]

[ cos alpha = 1-frac{m^{2} cdot upsilon ^{2}}{2 cdot left(m+Mright)^{2} cdot g cdot l}, ; ; ; alpha = arccos left(1-frac{m^{2} cdot upsilon ^{2}}{2 cdot left(m+Mright)^{2} cdot g cdot l} right).;;; (2) ]

Примечание. Так как –1 ≤ cos α ≤ 1, то уравнение (2) можно применять если

[ -1 le 1-frac{m^{2} cdot upsilon ^{2}}{2 cdot left(m+M right)^{2} cdot g cdot l}, ; ; ; frac{m^{2} cdot upsilon ^{2}}{left(m+ M right)^{2} cdot g cdot l} le 4. ]

Если это неравенство не выполняется, то угол α = 180°, и система совершает полный оборот.


Записан


239. Конькобежец массой M = 60 кг, стоя на льду, бросает в горизонтальном направлении шайбу массой m = 0,3 кг со скоростью υ = 40 м/с. На какое расстояние откатится при этом конькобежец, если коэффициент трения коньков о лед μ = 0,004?

Подобная задача (с другими числовыми значениями) решена на форуме: Конькобежец на коньках бросает мяч.

Ответ. 0,5 м.


Записан


  • Печать

Страницы: 1 2 [3] 4 5 7

Условие задачи:

Найти количество теплоты, выделившейся при абсолютно неупругом ударе свинцового шара массой 1 кг об очень тяжелую стенку, движущуюся со скоростью 5 см/с. Шар до удара двигался не вращаясь перпендикулярно стенке, навстречу ей со скоростью 10 см/с.

Задача №2.10.26 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

(m=1) кг, (u=5) см/с, (upsilon=10) см/с, (M gg m), (Q-?)

Решение задачи:

Эту задачу можно решать двумя способами.

Первый способ. Запишем закон сохранения импульса в проекции на ось (x) и закон сохранения энергии для системы тел «шар — стенка» в системе отсчета (СО) Земли. Замечу, что этот способ достаточно трудоёмкий, по сравнению со вторым.

Из равенства (1) выразим скорость стенки с шаром (u_1) после удара:

Полученное выражение для скорости (u_1) подставим в (2).

Оставим искомое количество теплоты (Q) в одной стороне, все остальные члены перенесем в другую, где приведем их под общий знаменатель.

Раскроем в числителе скобки и квадрат разности:

Вынесем в числителе общий множитель (mM) за скобки:

Воспользуемся основным свойством дроби и поделим и числитель и знаменатель на (M).

Так как по условию стенка очень тяжелая, то есть (M gg m), то отношение (<frac>) стремится к нулю, значит им можно пренебречь. В итоге конечная формула такая:

Второй способ. Перейдем в систему отсчета (СО), связанную с массивной стенкой. В этой СО скорость свинцового шарика равна (upsilon + u) и направлена к стенке. После удара скорость шарика станет такой же, как и у стенки, то есть в этой СО станет равной нулю. Получается, что вся кинетическая энергия шарика в этой СО перейдет в теплоту:

Как Вы видите, второй способ решения этой задачи существенно короче.

Переведем скорости в систему СИ, а уже потом будет считать ответ:

Ответ: 11,25 мДж.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Вследствие изменения полной механической энергии системы может выделяться теплота.

Наличие сил трения (сопротивления) между телами замкнутой системы приводит к выделению энергии в виде теплоты:

где E 1 — полная механическая энергия системы в начальном состоянии; E 2 — полная механическая энергия системы в конечном состоянии.

Если теплота в механической системе выделяется в результате совершения работы силами трения, то количество выделившейся при этом теплоты может быть рассчитано по формуле

где A тр — работа, совершенная силами трения.

Превращение части механической энергии в теплоту происходит при абсолютно неупругом столкновении (ударе) двух и более тел.

Абсолютно неупругий удар — это столкновение тел, в результате которого тела объединяются и продолжают двигаться как единое целое.

Для абсолютно неупругого удара двух тел:

  • выполняется закон сохранения импульса:

m 1 v → 1 + m 2 v → 2 = ( m 1 + m 2 ) u → ;

  • не выполняется закон сохранения полной механической (кинетической) энергии:

m 1 v 1 2 2 + m 2 v 2 2 2 ≠ ( m 1 + m 2 ) u 2 2 ,

где m 1 и m 2 — массы соударяющихся тел; v → 1 и v → 2 — скорости тел до столкновения; ( m 1 + m 2 ) — масса тела, образовавшегося в результате удара; u → — скорость тела, образовавшегося в результате удара.

Разность энергий до и после столкновения равна теплоте, выделившейся в процессе столкновения:

Q = m 1 v 1 2 2 + m 2 v 2 2 2 − ( m 1 + m 2 ) u 2 2 .

Пример 36. Какая доля энергии двух движущихся с равными по модулю скоростями тел, направленными под прямым углом друг к другу, перейдет в теплоту при абсолютно неупругом ударе? Массы тел относятся как 1:2.

Решение. На рисунке показаны два положения системы тел: до удара и сразу после удара. До удара тела движутся: первое — в положительном направлении оси Ox , второе — в положительном направлении оси Oy . Столкновение тел (абсолютно неупругий удар) происходит в начале системы координат. В результате абсолютно неупругого удара тела объединяются и движутся как единое целое со скоростью u → .

Полная механическая энергия системы является кинетической энергией:

E 1 = W k 1 + W k 2 ;

где W k 1 = m 1 v 1 2 2 — кинетическая энергия первого тела до удара; W k 2 = m 2 v 2 2 2 — кинетическая энергия второго тела до удара; m 1 — масса первого тела; m 2 — масса второго тела; v 1 — модуль скорости пер­вого тела до удара; v 2 — модуль скорости второго тела до удара; W k = ( m 1 + m 2 ) u 2 2 — кинетическая энергия объединенного тела после удара; ( m 1 + m 2 ) — масса объединенного тела после удара; u — модуль скорости объединенного тела после удара.

Теплота, выделившаяся в результате абсолютно неупругого удара, определяется разностью полных механических энергий системы до удара и после него:

Для ее вычисления необходимо определить скорость объединенного тела.

Воспользуемся законом сохранения импульса, записав его в виде:

m 1 v → 1 + m 2 v → 2 = ( m 1 + m 2 ) u → ,

или в проекциях на координатные оси,

O x : m 1 v 1 = ( m 1 + m 2 ) u x ; O y : m 2 v 2 = ( m 1 + m 2 ) u y . >

Выразим отсюда проекции скорости объединенного тела:

u x = m 1 v 1 m 1 + m 2 u y = m 2 v 2 m 1 + m 2 >

и подставим их в формулу, определяющую квадрат скорости объединенного тела:

u 2 = u x 2 + u y 2 = ( m 1 v 1 m 1 + m 2 ) 2 + ( m 2 v 2 m 1 + m 2 ) 2 .

Полная механическая энергия объединенного тела, таким образом, определяется формулой

E 2 = ( m 1 + m 2 ) u 2 2 = ( m 1 + m 2 ) 2 [ ( m 1 v 1 m 1 + m 2 ) 2 + ( m 2 v 2 m 1 + m 2 ) 2 ] .

  • равенства модулей скоростей тел до удара:
  • соотношения между массами тел:

запишем полные механические энергии системы:

E 1 = m 1 v 1 2 2 + m 2 v 2 2 2 = m v 2 2 + 2 m v 2 2 = 3 2 m v 2 ;

E 2 = ( m 1 + m 2 ) 2 [ ( m 1 v 1 m 1 + m 2 ) 2 + ( m 2 v 2 m 1 + m 2 ) 2 ] = 5 6 m v 2 .

Количество теплоты, выделившейся после абсолютно неупругого удара, определяется формулой

Q = E 1 − E 2 = 3 2 m v 2 − 5 6 m v 2 = 2 3 m v 2 .

Доля механической энергии, превратившейся в теплоту в результате абсолютно неупругого удара,

η = Q E 1 = 2 m v 2 3 2 3 m v 2 = 4 9 ≈ 0,44 .

При абсолютно неупругом ударе двух тел с заданными соотношениями масс и скоростей в теплоту перешло около 44 % механической энергии системы.

Пример 37. Два пластилиновых шарика, массы которых соотносятся как 1:5, подвешены на нитях одинаковой длины. Шарики симметрично разводят в противоположные стороны и отпускают. Какая часть механической энергии перейдет в теплоту при абсолютно неупругом ударе?

Решение. На рисунке показаны четыре состояния системы тел:

1) шарики симметрично разведены в стороны, при этом они подняты на высоту h над нулевым уровнем потенциальной энергии; полная механическая энергия системы является потенциальной:

E 1 = m 1 gh + m 2 gh ,

или с учетом соотношения масс ( m 1 = m , m 2 = 5 m ):

где g — модуль ускорения свободного падения; h — первоначальная высота шариков над нулевым уровнем потенциальной энергии;

2) шарики подлетают друг к другу (но соударения еще не происходит); полная механическая энергия системы является кинетической:

E 2 = m 1 v 1 2 2 + m 2 v 2 2 2 ,

или с учетом соотношения масс ( m 1 = m , m 2 = 5 m ):

E 2 = m 2 ( v 1 2 + 5 v 2 2 ) ,

где v 1 — модуль скорости первого шарика; v 2 — модуль скорости второго шарика;

3) шарики после абсолютно неупругого удара объединяются и движутся как единое целое с некоторой скоростью; полная механическая энергия системы является кинетической:

E 3 = ( m 1 + m 2 ) u 2 2 ,

или с учетом соотношения масс ( m 1 = m , m 2 = 5 m ):

где u — модуль скорости объединенного тела непосредственно после удара;

4) объединенное тело поднимается на некоторую высоту, полная механическая энергия системы является потенциальной:

E 4 = ( m 1 + m 2 ) gH ,

или с учетом соотношения масс ( m 1 = m , m 2 = 5 m ):

где H — максимальная высота, на которую может подняться объединенное тело.

При переходе системы из первого состояния во второе полная механическая энергия сохраняется как для всей системы, так и для каждого шарика в отдельности:

m 1 g h = m 1 v 1 2 2 ; m 2 g h = m 2 v 2 2 2 . >

Отсюда следует равенство модулей скоростей шариков перед абсолютно неупругим ударом:

v = v 1 = v 2 = 2 g h .

С учетом этого равенства полная механическая энергия системы перед ударом определяется формулой

При переходе системы из второго состояния в третье полная механическая энергия системы не сохраняется (при абсолютно неупругом ударе часть энергии переходит в теплоту), однако импульс системы сохраняется:

m 1 v → 1 + m 2 v → 2 = ( m 1 + m 2 ) u → ,

в проекции на направление скорости объединенного тела

− m 1 v 1 + m 2 v 2 = ( m 1 + m 2 ) u ,

или с учетом соотношения масс ( m 1 = m , m 2 = 5 m ) и равенства модулей скоростей ( v = v 1 = v 2 ):

Отсюда найдем отношение модулей скоростей шариков до и после удара:

Искомой величиной является доля механической энергии, которая перейдет в результате абсолютно неупругого удара в теплоту, т.е.

η = Q E 2 = E 2 − E 3 E 2 = 1 − E 3 E 2 ,

где E 2 — полная механическая энергия системы до удара (состояние 2); E 3 — полная механическая энергия системы после удара (состояние 3).

Подстановка в формулу соответствующих энергий и отношения скоростей ( u / v ) дает искомую долю:

η = 1 − 3 m u 2 3 m v 2 = 1 − u 2 v 2 = 1 − ( u v ) 2 = 1 − ( 2 3 ) 2 = 5 9 ≈ 0,56 .

Таким образом, при абсолютно неупругом ударе шариков с заданным соотношением масс в теплоту превращается около 56 % их суммарной механической энергии.

Пример 38. Тело массой 2,0 кг влетает в вязкую среду со скоростью 10 м/c. Определить кинетическую энергию тела при вылете из среды, если 30 % его механической энергии в среде превращается в теплоту.

Решение. На рисунке показаны два положения тела:

1) перед попаданием в вязкую среду; тело имеет полную механическую (кинетическую) энергию E 1 ;

2) после вылета из вязкой среды; тело имеет полную механическую (кинетическую) энергию E 2 .

Теплота, которая выделяется при движении тела в вязкой среде, определяется разностью

где Q = 0,3 E 1 — по условию задачи.

Выразим искомую кинетическую энергию тела при вылете из вязкой среды:

Замена Q = 0,3 E 1 преобразует формулу к виду:

E 2 = E 1 − 0,3 E 1 = 0,7 E 1 ,

где E 1 = m v 1 2 2 — кинетическая энергия тела перед его попаданием в вязкую среду; m — масса тела; v 1 — модуль первоначальной скорости тела.

Окончательная формула для расчета искомой кинетической энергии имеет следующий вид:

Скорость брошенного мяча непосредственно перед ударом об абсолютно гладкую стену была вдвое больше его скорости сразу после удара. Какое количество теплоты выделилось при ударе, если перед ударом кинетическая энергия мяча была равна 20 Дж? (Ответ дайте в джоулях.)

Кинетическая энергия пропорциональна квадрату скорости. Поскольку скорость после удара уменьшилась в 2 раза, кинетическая энергия мяча уменьшилась в 4 раза и стала равна 5 Дж. По закону сохранения, количество теплоты, выделившееся после удара равняется убыли кинетической энергии:

Для приведенного здесь решения задачи существенно, что стенка, о которую ударяется мяч, абсолютно гладкая. Действительно, в противном случае на мяч во время удара может дейстовать еще и сила трения со стороны стенки, которая приведет к тому, что мяч после удара будет вращаться поэтому кинетическая энергия шара после удара будет состоять из энергии поступательного и вращательного движений. Следовательно, судить о величине выделившегося тепла будет невозможно.

§6. Задачи на столкновения и законы сохранения импульса и энергии

В физике под столкновениями понимают процессы взаимодействия  между телами (частицами) в широком смысле слова, а не только в буквальном — как соприкосновение тел. Сталкивающиеся тела на большом расстоянии являются свободными. Проходя друг мимо друга, тела взаимодействуют между собой, в результате могут происходить различные процессы — тела могут соединиться в одно тело (абсолютно неупругий удар), могут возникать новые тела и, наконец, может иметь место упругое столкновение, при котором тела после некоторого сближения вновь расходятся без изменения своего внутреннего состояния. Столкновения, сопровождающиеся изменением внутреннего состояния тел, называются неупругими. Тела (частицы), участвующие в столкновении, характеризуются (до и после столкновения)  импульсами и энергиями. Процесс столкновения сводится к изменению этих величин в результате взаимодействия. Законы сохранения энергии и импульса позволяют достаточно просто устанавливать соотношения между различными физическими величинами при столкновении тел. Особенно ценным здесь является то обстоятельство, что зачастую законы сохранения могут быть использованы даже в тех случаях, когда действующие силы неизвестны. Так обстоит дело, например, в физике элементарных частиц.

Происходящие в обычных условиях столкновения макроскопических тел почти всегда бывают в той или иной степени неупругими – уже хотя бы потому, что они сопровождаются некоторым нагреванием тел, т. е. переходом части их кинетической энергии в тепло. Тем не менее, в физике понятие об упругих столкновениях играет важную роль. С такими столкновениями часто приходится иметь дело в физическом эксперименте в области атомных явлений, да и обычные столкновения можно часто с достаточной степенью точности считать упругими.

Сохранение импульса тел (частиц) при столкновении обусловлено тем, что совокупность тел, участвующих в столкновении, составляет либо изолированную систему, т. е. на тела, входящие в систему, не действуют внешние силы, либо замкнутую: внешние силы отличны от нуля, а сумма внешних сил равна нулю. Несколько сложнее обстоит дело с применением закона сохранения энергии при столкновениях. Обращение к сохранению энергии  требует порой учёта различных форм внутренней энергии.

Можно сказать, что действие законов сохранения импульса и энергии в процессах столкновения подтверждено широким спектром опытных данных.

Неупругие столкновения

Два куска пластилина массами `m_1` и `m_2`, летящие со скоростями `vecv_1` и `vecv_2` слипаются. Найдите наибольшее `Q_max` и наименьшее количество `Q_min` теплоты, которое может выделиться в результате абсолютно неупругого соударения.

Рассмотрим абсолютно неупругое соударение («слипание») тел, движущихся в ЛСО скоростями `vecv_1` и `vecv_2` соответственно. В процессе абсолютно неупругого соударения импульс системы сохраняется.

`m_1vecv_1+m_2vecv_2=(m_1+m_2)vecv`.

Отсюда находим скорость составного тела

`vecv=(m_1vecv_1+m_2vecv_2)/(m_1+m_2)`.

Закон сохранения энергии принимает вид

`(m_1vecv_1^2)/2+(m_2vecv_2^2)/2=((m_1+m_2)*vecv)/2+Q`.

Из приведенных соотношений находим убыль кинетической энергии

`Q=(m_1*m_2*(vecv_2-vecv_1)^2)/(2(m_1+m_2))=1/2 mu(vecv_2-vecv_1)^2`,

здесь `mu=(m_1m_2)/(m_1+m_2)` — приведенная масса системы тел.

Итак, при абсолютно неупругом соударении во внутреннюю энергию переходит кинетическая энергия тела приведенной массы, движущегося с относительной скоростью.

Убыль механической энергии достигает наибольшей величины

`Q_max=(m_1*m_2*(vecv_2-vecv_1)^2)/(2(m_1+m_2))=1/2 mu(v_1+v_2)^2` 

при `vecv_1 uarr darr vecv_2`.

Убыль механической энергии будет наименьшей

`Q_min=(m_1*m_2*(vecv_2-vecv_1)^2)/(2(m_1+m_2))=1/2 mu(v_2-v_1)^2` 

при `vecv_1 uarr uarr vecv_2`.

Упругие столкновения

На гладкой горизонтальной поверхности лежит гладкая шайба массой `M`. На него налетает гладкая шайба массой `m`, движущийся со скоростью `vec v`. Происходит упругий центральный удар шайб. Найдите скорости `vecv_1` и `vecv_2` шайб после соударения. При каком условии налетающая шайба будет двигаться после соударения в прежнем направлении?

Задачу рассмотрим в ЛСО, ось `Ox` которой направим по линии центров шайб в момент соударения. Внешние силы, действующие на  шайбы в  процессе соударения, это силы тяжести и силы нормальной реакции опоры. Их сумма равна нулю. Следовательно, импульс системы шайб в процессе взаимодействия не изменяется. По закону сохранения импульса   `m vec v = m vecv_1 + M vecv_2`.

Переходя к проекциям на ось `Ox`, получаем `mv = mv_(1x) + Mv_2`,  здесь учтено, что направление скорости `vecv_1` налетающей шайбы после соударения не известно. По закону сохранения энергии

`(mv^2)/2 = (mv_(1x)^2)/2 + (Mv_2^2)/2`.

Полученные соотношения перепишем в виде

`m(v — v_(1x)) = Mv_2`,

`m(v^2 — v_(1x)^2) = Mv_2^2`.

Разделив второе равенство на первое `(v != v_(1x))`, приходим к линейной системе `v_2 = v + v_(1x)`,  `m(v — v_(1x)) = Mv_2`, решение которой имеет вид

`v_(1x) = (m — M)/(m + M) v`,   `v_2 = (2m)/(m + M) v`.

Налетающая шайба будет двигаться после соударения в прежнем направ­лении `(v_(1x) > 0)` при `m > M`,  т. е. если масса налетающей шайбы больше массы по­коящейся шайбы.

Две гладкие упругие круглые шайбы движутся поступательно по гладкой горизонтальной поверхности со скоростями `vecv_1` и `vecv_2`. Найдите скорости `vecv_1^’` и `vecv_2^’` шайб после абсолютно упругого нецентрального соударения. Массы шайб `m_1` и `m_2`.

Задачу рассмотрим в ИСО, оси координат `Ox` и `Oy` которой лежат в горизонтальной плоскости, при  этом ось `Ox` направлена по линии  центров шайб в момент соударения (рис. 16).

В  течение  времени  соударения на систему шайб действуют только вертикальные внешние силы: это силы тяжести и силы нормальной реакции. Их сумма равна нулю. Тогда импульс системы шайб в процессе взаимодействия  сохраняется 

`vecp_1 + vecp_2 = vecp_1^’ + vecp_2^’`,      

здесь `vecp_1 = m_1 vecv_1`, `vecp_2 = m_2 vecv_2`, `vecp_1^’ = m_1 vecv_1^’`, `vecp_2^’ = m_2 vecv_2^’` — импульсы шайб до и после соударения.

Так как шайбы идеально гладкие, то в процессе соударения внут­ренние силы -силы упругого взаимодействия — направлены только по оси `Ox`. Эти силы не изменяют `y`-составляющие импульсов шайб. Тогда из `p_(1y) = p_(1y)^’`, `p_(2y) =  p_(2y)^’`  находим `y`-составляющие скоростей шайб после соударения

 `vecv_(1y)^’ = v_(1y)`,   `v_(2y)^’ = v_(2y)`,

т. е. в проекции на ось `Oy` скорости шайб в результате соударения не изменились.

Найдём `x`-составляющие скоростей шайб после упругого соударения. При таком соударении сохраняется кинетическая энергия

`(m_1 (v_(1x)^2 + v_(1y)^2))/2 + (m_2 (v_(2x)^2 + v_(2y)^2))/2 = (m_1 ((v_(1x)^’)^2 + (v_(1y)^’)^2))/2 + (m_2 ((v_(2x)^’)^2 + (v_(2y)^’)^2))/2`.

С учётом равенства `y`-составляющих скоростей шайб до и после со­ударения последнее равенство принимает вид

`(m_1 v_(1x)^2)/2 + (m_2 v_(2x)^2)/2 = (m_1 (v_(1x)^’)^2)/2 + (m_2 (v_(2x)^’)^2)/2`.

Обратимся к закону сохранения импульса и перейдём к проекциям им­пульсов шайб на ось  `Ox`

`m_1 v_(1x) + m_2 v_(2x) = m_1 v_(1x)^’ + m_2 v_(2x)^’`.

Таким образом, исходная задача сведена к задаче об абсолютно упру­гом центральном ударе: именно такой вид приняли бы законы сохра­нения энергии и импульса, если бы скорости шайб были направлены по линии центров. Полученную нелинейную систему уравнений можно свести к линейной. Для этого следует (как и в предыдущей задаче) в обоих уравнениях по одну сторону знака равенства объединить слагае­мые, относящиеся к первой шайбе, а по другую — ко второй, и разде­лить `(v_(1x) != v_(1x)^’)` полученные соотношения. Это приводит к линей­ному уравнению

`v_(1x) + v_(1x)^’ = v_(2x) + v_(2x)^’`.

Решая систему из двух последних уравнений, находим

`v_(1x)^’ = ((m_1 — m_2) v_(1x) + 2m_2 v_(2x))/(m_1 + m_2)`,

`v_(2x)^’ = (2m_1 v_(1x) + (m_2 — m_1) v_(2x))/(m_1 + m_2)`.

Полученные соотношения для `v_(1x)^’`, `v_(1y)^’` и `v_(2x)^’`, `v_(2y)^’` решают вопрос о проекциях и величинах скоростей шайб после соударения

 `v_1^’ = sqrt((v_(1x)^’)^2 + (v_(1y)^’)^2)`,      `v_2^’ = sqrt((v_(2x)^’)^2 + (v_(2y)^’)^2)`, 

а также об углах `alpha_1` и `alpha_2`, которые векторы скорости `vecv_1^’` и `vecv_2^’` образуют с положительным направлением оси `Ox`:

`bbb»tg»  alpha_1 = (v_(1y)^’)/(v_(1x)^’)`,   `bbb»tg»  alpha_2 = (v_(2y)^’)/(v_(2x)^’)`.

Построенное в общем виде решение задач упругого центрального и нецентрального соударений открывает дорогу к анализу целого ряда задач, для которых рассмотренная модель соответствует характеру взаимодействия тел (частиц).

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти физический вес
  • Как найти выколотую точку на графике функции
  • Application has stopped working snowrunner как исправить ошибку
  • Как найти на вайлдберриз личный счет
  • Как найти забытые вещи в поезде ржд

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии