График линейной функции, его свойства и формулы
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Понятие функции
Функция — это зависимость «y» от «x», где «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.
Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:
- Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
- Графический способ — наглядно.
- Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
- Словесный способ.
График функции — это объединение всех точек, когда вместо «x» можно подставить произвольные значения и найти координаты этих точек.
Понятие линейной функции
Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.
Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.
Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.
Если известно конкретное значение х, можно вычислить соответствующее значение у.
Нам дана функция: у = 0,5х — 2. Значит:
- если х = 0, то у = -2;
- если х = 2, то у = -1;
- если х = 4, то у = 0;
- и т. д.
Для удобства результаты можно оформлять в виде таблицы:
Графиком линейной функции является прямая линия. Для его построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.
Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.
Буквенные множители «k» и «b» — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.
Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты «k» и «b».
Функция | Коэффициент «k» | Коэффициент «b» |
---|---|---|
y = 2x + 8 | k = 2 | b = 8 |
y = −x + 3 | k = −1 | b = 3 |
y = 1/8x − 1 | k = 1/8 | b = −1 |
y = 0,2x | k = 0,2 | b = 0 |
Может показаться, что в функции «y = 0,2x» нет числового коэффициента «b», но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа «y = kx + b» есть коэффициенты «k» и «b».
Еще не устали? Изучать математику веселее с опытным преподавателем на курсах по математике в Skysmart!
Свойства линейной функции
- Область определения функции — множество всех действительных чисел.
- Множеством значений функции является множество всех действительных чисел.
- График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.
- Функция не имеет ни наибольшего, ни наименьшего значений.
- Четность и нечетность линейной функции зависят от значений коэффициентов k и b:
b ≠ 0, k = 0, значит y = b — четная;
b = 0, k ≠ 0, значит y = kx — нечетная;
b ≠ 0, k ≠ 0, значит y = kx + b — функция общего вида;
b = 0, k = 0, значит y = 0 — как четная, так и нечетная функция. - Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.
- График функции пересекает оси координат:
ось абсцисс ОХ — в точке (-b/k, 0);
ось ординат OY — в точке (0; b). - x=-b/k — является нулем функции.
- Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.
Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х. - Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0: функция принимает отрицательные значения на промежутке (-∞, — b /k) и положительные значения на промежутке (- b /k, +∞)
При k b /k, +∞) и положительные значения на промежутке (-∞, — b /k). - Коэффициент k характеризует угол, который образует прямая с положительным направлением Ох. Поэтому k называют угловым коэффициентом.
Если k > 0, то этот угол острый, если k
Построение линейной функции
В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида «у = kx + b», достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.
Например, чтобы построить график функции y = 1 /3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:
В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:
- если k > 0, то график наклонен вправо;
- если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;
- если b 1 /2x + 3, y = x + 3.
Проанализируем рисунок. Все графики наклонены вправо, потому что во всех функциях коэффициент k больше нуля. Причем, чем больше значение k, тем круче идет прямая.
В каждой функции b = 3, поэтому все графики пересекают ось OY в точке (0; 3).
Теперь рассмотрим графики функций y = -2x + 3, y = — 1 /2x + 3, y = -x + 3.
В этот раз во всех функциях коэффициент k меньше нуля, и графики функций наклонены влево. Чем больше k, тем круче идет прямая.
Коэффициент b равен трем, и графики также пересекают ось OY в точке (0; 3).
Рассмотрим графики функций y = 2x + 3, y = 2x, y = 2x — 2.
Теперь во всех уравнениях функций коэффициенты k равны. Получили три параллельные прямые.
При этом коэффициенты b различны, и эти графики пересекают ось OY в различных точках:
- график функции y = 2x + 3 (b = 3) пересекает ось OY в точке (0; 3);
- график функции y = 2x (b = 0) пересекает ось OY в точке начала координат (0; 0);
- график функции y = 2x — 2 (b = -2) пересекает ось OY в точке (0; -2).
Прямые будут параллельными тогда, когда у них совпадают угловые коэффициенты.
Подытожим. Если мы знаем знаки коэффициентов k и b, то можем представить, как выглядит график функции y = kx + b.
Если k 0, то график функции y = kx + b выглядит так:
0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>
Если k > 0 и b > 0, то график функции y = kx + b выглядит так:
0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>
Точки пересечения графика функции y = kx + b с осями координат:
- С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.
Координаты точки пересечения с осью OY: (0; b). - С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = — b /k.
Координаты точки пересечения с осью OX: (- b /k; 0)
Решение задач на линейную функцию
Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!
Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.
- В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.
Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.
Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:
2 = -4(-3) + b
b = -10 - Таким образом, нам надо построить график функции y = -4x — 10
Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).
Поставим эти точки в координатной плоскости и соединим прямой:
Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).
- Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.
Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство. - Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений.
- Вычтем из второго уравнения системы первое, и получим k = 3.
Подставим значение k в первое уравнение системы, и получим b = -2.
Как найти координаты точек пересечения графика функции: примеры решения
Вы будете перенаправлены на Автор24
В практике и в учебниках наиболее распространены нижеперечисленные способы нахождения точки пересечения различных графиков функций.
Первый способ
Первый и самый простой – это воспользоваться тем, что в этой точке координаты будут равны и приравнять графики, а из того что получится можно найти $x$. Затем найденный $x$ подставить в любое из двух уравнений и найти координату игрек.
Найдём точку пересечения двух прямых $y=5x + 3$ и $y=x-2$, приравняв функции:
Теперь подставим полученный нами икс в любой график, например, выберем тот, что попроще — $y=x-2$:
$y=-frac<1> <2>– 2 = — 2frac12$.
Точка пересечения будет $(-frac<1><2>;- 2frac12)$.
Второй способ
Второй способ заключается в том, что составляется система из имеющихся уравнений, путём преобразований одну из координат делают явной, то есть, выражают через другую. После это выражение в приведённой форме подставляется в другое.
Узнайте, в каких точках пересекаются графики параболы $y=2x^2-2x-1$ и пересекающей её прямой $y=x+1$.
Решение:
Второе уравнение проще первого, поэтому подставим его вместо $y$:
Вычислим, чему равен x, для этого найдём корни, превращающие равенство в верное, и запишем полученные ответы:
Подставим наши результаты по оси абсцисс по очереди во второе уравнение системы:
$y_1= 2 + 1 = 3; y_2=1 — frac<1> <2>= frac<1><2>$.
Точки пересечения будут $(2;3)$ и $(-frac<1><2>; frac<1><2>)$.
Третий способ
Готовые работы на аналогичную тему
Перейдём к третьему способу — графическому, но имейте в виду, что результат, который он даёт, не является достаточно точным.
Для применения метода оба графика функций строятся в одном масштабе на одном чертеже, и затем выполняется визуальный поиск точки пересечения.
Данный способ хорош лишь в том случае, когда достаточно приблизительного результата, а также если нет каких-либо данных о закономерностях рассматриваемых зависимостей.
Найдите точку пересечения графиков на общем рисунке.
Рисунок 1. Точка пересечения двух функций. Автор24 — интернет-биржа студенческих работ
Решение:
Тут всё просто: ищем точки пересечения пунктиров, опущенных с графиков с осями абсцисс и ординат и записываем по порядку. Здесь точка пересечения равна $(2;3)$.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 07 05 2021
Вывести уравнение прямой по координатам двух точек
По введенным пользователем координатам двух точек вывести уравнение прямой, проходящей через эти точки.
Общее уравнение прямой имеет вид y = kx + b . Для какой-то конкретной прямой в уравнении коэффициенты k и b заменяются на числа, например, y = 4x — 2 . Задача сводится именно к нахождению этих коэффициентов.
Так как координаты точки это значения x и y , то мы имеем два уравнения. Пусть, например, координаты точки А(3;2), а координаты B(-1;-1). Получаем уравнения:
2 = k*3 + b,
-1 = k*(-1) + b.
Решая полученную систему уравнений находим значения k и b :
b = 2 — 3k
-1 = -k + 2 — 3k
4k = 3
k = 3/4 = 0.75
b = 2 — 3 * 0.75 = 2 — 2.25 = -0.25
Таким образом, получается уравнение конкретной прямой, проходящей через указанные точки: y = 0.75x — 0.25.
Алгоритм решения данной задаче на языке программирования будет таков:
- Получить значения координат первой точки и присвоить их переменным, например x1 и y1 .
- Получить значения координат ( x2, y2 ) второй точки.
- Вычислить значение k по формуле k = (y1 — y2) / (x1 — x2) .
- Вычислить значение b по формуле b = y2 — k * x2 .
- Вывести на экран полученное уравнение.
http://spravochnick.ru/matematika/kak_nayti_koordinaty_tochek_peresecheniya_grafika_funkcii_primery_resheniya/
http://gospodaretsva.com/straight.html
Как найти координаты точек пересечения графика функции: примеры решения
Ирина Алексеевна Антоненко
Эксперт по предмету «Математика»
Задать вопрос автору статьи
В практике и в учебниках наиболее распространены нижеперечисленные способы нахождения точки пересечения различных графиков функций.
Первый способ
Первый и самый простой – это воспользоваться тем, что в этой точке координаты будут равны и приравнять графики, а из того что получится можно найти $x$. Затем найденный $x$ подставить в любое из двух уравнений и найти координату игрек.
Пример 1
Найдём точку пересечения двух прямых $y=5x + 3$ и $y=x-2$, приравняв функции:
$5x = x- 2$;
$4x = -2$;
$x=-frac{1}{2}$
Теперь подставим полученный нами икс в любой график, например, выберем тот, что попроще — $y=x-2$:
$y=-frac{1}{2} – 2 = — 2frac12$.
Точка пересечения будет $(-frac{1}{2};- 2frac12)$.
Второй способ
Второй способ заключается в том, что составляется система из имеющихся уравнений, путём преобразований одну из координат делают явной, то есть, выражают через другую. После это выражение в приведённой форме подставляется в другое.
Пример 2
Узнайте, в каких точках пересекаются графики параболы $y=2x^2-2x-1$ и пересекающей её прямой $y=x+1$.
Решение:
Составим систему:
$begin{cases} y=2x^2-2x-1 \ y= x + 1 \ end{cases}$
Второе уравнение проще первого, поэтому подставим его вместо $y$:
$x+1 = 2x^2 – 2x-1$;
$2x^2 – 3x – 2 = 0$.
Вычислим, чему равен x, для этого найдём корни, превращающие равенство в верное, и запишем полученные ответы:
$x_1=2; x_2 = -frac{1}{2}$
Подставим наши результаты по оси абсцисс по очереди во второе уравнение системы:
$y_1= 2 + 1 = 3; y_2=1 — frac{1}{2} = frac{1}{2}$.
Точки пересечения будут $(2;3)$ и $(-frac{1}{2}; frac{1}{2})$.
Третий способ
«Как найти координаты точек пересечения графика функции: примеры решения» 👇
Перейдём к третьему способу — графическому, но имейте в виду, что результат, который он даёт, не является достаточно точным.
Для применения метода оба графика функций строятся в одном масштабе на одном чертеже, и затем выполняется визуальный поиск точки пересечения.
Данный способ хорош лишь в том случае, когда достаточно приблизительного результата, а также если нет каких-либо данных о закономерностях рассматриваемых зависимостей.
Пример 3
Найдите точку пересечения графиков на общем рисунке.
Рисунок 1. Точка пересечения двух функций. Автор24 — интернет-биржа студенческих работ
Решение:
Тут всё просто: ищем точки пересечения пунктиров, опущенных с графиков с осями абсцисс и ординат и записываем по порядку. Здесь точка пересечения равна $(2;3)$.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Дата последнего обновления статьи: 07.05.2023
Точки пересечения графиков функций
В алгебре и начале анализа можно встретить множество задач на поиск точек пересечения графиков функций с помощью их построения или другими методами. Благодаря определенному алгоритму действий, найти ответ достаточно просто. В большинстве случаев решение заключается в определении корней различного вида уравнений.
График функции (y = f(x)) является множеством точек ((x; y)), координаты которых связаны соотношением (y = f(x).)
Равенство (y = f(x)) называют уравнением данного графика. Таким образом, график функции представляет собой множество точек (x; y), где x — является аргументом, а y — определяется как значение функции, соответствующее данному аргументу.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
В том случае, когда графики пересекаются в какой-то точке, можно сделать вывод о существовании общего решения системы уравнений. Определить координаты точки можно с помощью графического или аналитического метода. В первом случае требуется построить график уравнения с переменной. Аналитический метод поиска координат точек, в которых графики функций пересекаются, подразумевает решение уравнения, а найденные корни и являются искомыми точками.
Как найти координаты, примеры решения
Существует несколько способов решения подобных задач:
- Поиск точек пересечения графиков функций заключается в приравнивании обеих функций друг к другу. При этом все члены с х переносят в левую сторону, а оставшиеся – в правую. Затем остается найти корни уравнения, которое получилось после преобразований.
- Второй метод состоит в записи системы уравнения для ее последующего решения с помощью подстановки одной функции в другую.
- Третий способ подразумевает построение графиков функций, чтобы определить точки их пересечения визуально.
В качестве примера можно рассмотреть две линейные функции:
(f(x) = k_1 x+m_1)
(g(x) = k_2 x + m_2)
Данные функции являются прямыми. Их можно графически изобразить, если принять какие-либо два значения (x_1) и (x_2) и найти (f(x_1)) и ((x_2)). Далее действия необходимо повторить с функцией (g(x)). Затем достаточно легко определить визуально координаты точки пересечения рассматриваемых функций.
Важно отметить, что для линейных функций характерна лишь одна точка пересечения только в том случае, когда (k_1 neq k_2). В противном случае (k_1=k_2), а функции будут параллельными друг другу, в связи с тем, что k является коэффициентом угла наклона. При( k_1 neq k_2) и (m_1=m_2) точка пересечения будет соответствовать (M(0;m)). Данная закономерность упрощает решение многих подобных задач.
Задача № 1
Имеются функции: (f(x) = 2x-5)
(g(x)=x+3)
Требуется определить координаты точки, в которой пересекаются графики рассматриваемых функций.
Решение
В первую очередь стоит отметить, что функции являются линейными. Важно обратить внимание на коэффициент угла наклона рассматриваемых функций:
(k_1 = 2)
(k_2 = 1)
Заметим, что:
(k_1 neq k_2)
По этой причине имеется лишь одна точка пересечения графиков функций. Определить ее можно путем решения уравнения:
(f(x)=g(x))
(2x-5 = x+3)
Необходимо перенести члены с x в левую часть, а остальные — в правую:
(2x — x = 3+5)
(x =
В результате удалось найти x=8, что соответствует абсциссе точки пересечения графиков. Требуется определить ординату y с помощью подстановки x = 8 в любое из уравнений – в (f(x)), либо в (g(x)):
(f(8) = 2cdot 8 — 5 = 16 — 5 = 11)
Таким образом, M (8;11) – представляет собой точку, в которой пересекаются графики пары линейных функций.
Ответ: M (8;11)
Задача № 2
Записаны две функции: (f(x)=2x-1)
(g(x) = 2x-4.)
Необходимо определить точки, в которых графики рассматриваемых функций пересекаются.
Решение
Угловые коэффициенты:
(k_1 = k_2 = 2)
Таким образом, линейные функции параллельны между собой, что объясняет отсутствие точек пересечения их графиков.
Ответ: графики функций параллельны, точки пересечения отсутствуют.
Задача № 3
Требуется определить координаты точки, в которой пересекаются графики следующих функций: (f(x)=x^2-2x+1)
(g(x)=x^2+1)
Решение
В данном случае функции являются нелинейными. Поэтому алгоритм решения задачи будет несколько отличаться от предыдущих примеров. В первую очередь следует приравнять уравнения:
(x^2-2x+1=x^2+1)
Далее необходимо разнести в разные стороны уравнения члены с x и без него:
(x^2-2x-x^2=1-1)
(-2x=0)
(x=0)
Таким образом, будет определена абсцисса искомой точки. Затем необходимо найти ординату у. Для этого нужно подставить (x = 0) в какое-либо из двух начальных уравнений. К примеру:
(f(0)=0^2-2cdot 0 + 1 = 1)
M (0;1) является точкой, в которой пересекаются графики функций.
Ответ: M (0;1)
Приравнивание функций друг к другу и нахождение корней
Выяснить, имеют ли точки пересечения графики функций, можно путем сравнения соответствующих тождеств и решения уравнения. Однако при этом допускается получение различных равенств с неизвестными. Тогда целесообразно воспользоваться специальными методиками.
Когда уравнение относится к первой степени или является линейным, решение получить достаточно просто. Метод заключается в переносе переменных величин в одну часть уравнения, а известных – в другую. Алгоритм действий:
- раскрытие скобок, приведение подобных коэффициентов;
- перенос членов с неизвестными в одну сторону, а с известными – в другую;
- математические преобразования;
- определение корня.
Квадратные уравнения решают с помощью одного из способов:
- разложение на множители;
- выделение полного квадрата;
- поиск дискриминанта;
- теорема Виета.
В первом случае представляется возможным понизить степень при неизвестной величине. Второй метод заключается в выделении квадрата по одной из формул сокращенного умножения. Каждая из этих методик реализуема при наличии знаний соответствующих тождеств, в том числе правил разложения на множители.
Третий способ состоит в поиске корней через дискриминант (Д), который является дополнительным параметром, позволяющим сразу решить задачу. Дискриминант определяется с помощью формулы:
((-S)^2-4PU)
В том случае, когда Д>0, переменная может иметь пару значений, которые превращают равенство в справедливое тождество. Если Д=0, то корень является единственным. Когда Д<0, искомое тождество с неизвестными не имеет решений.
Квадратные уравнения решают таким образом:
- выполнение необходимых алгебраических преобразований, в том числе раскрытие скобок и приведение подобных слагаемых;
- выбор наиболее оптимального способа решения и его реализация;
- проверка корней с помощью их подстановки в начальное выражение.
Примечание
Распространенной ошибкой является пренебрежение проверкой результатов решения. Некорректные действия могут привести к образованию ложных корней.
Существует несколько методик решения тождеств кубического и биквадратного типов:
- понижение степени, то есть разложение на множители;
- замена переменной.
Первый вариант решения подразумевает выполнение преобразований для последующего применения одной из формул сокращенного умножения. Такой способ применяют нечасто. Второй способ состоит в том, что при решении необходимо ввести переменную с более низкой степенью, которая упрощает выражение. Порядок действий при этом следующий:
- выполнение математических преобразований;
- выражение переменной через другую;
- решение квадратного или линейного уравнения;
- подстановка промежуточных корней, которые получилось найти на третьем шаге, во второй;
- вычисление искомых корней;
- проверка;
- исключение ложных решений;
- запись ответа.
Путем составления системы уравнений
Данный метод определения точек пересечения графиков функций предполагает запись системы уравнения. К примеру:
Решение системы уравнений представляет собой пару чисел (х, у), являющуюся одновременно решением для первого и второго уравнения системы. Решить систему уравнений – значит, отыскать все ее решения, либо установить их отсутствие.
Порядок действий при решении системы уравнений можно рассмотреть на примере:
Решение будет иметь следующий вид:
Данные уравнения являются линейными, поэтому график каждого из них представляет собой прямую. График первого уравнения проходит через точки (0; 1) и (-1; 0). График второго уравнения проходит через точки (0; -1) и (-1; 0). Прямые пересекаются в точке (-1; 0), это и является решением системы уравнений.
Решение системы представляет сбой единственную пару чисел:
Если подставить данные числа в любое из уравнений, то получится справедливое равенство. Таким образом, имеется единственное решение линейной системы. Можно записать отчет: (-1;0).
В процессе решения линейной системы можно столкнуться с разными ситуациями:
- система обладает единственным решением, прямые пересекаются;
- решения системы отсутствуют. прямые параллельны;
- система обладает бесчисленным множеством решений, прямые совпадают.
При рассмотрении частного случая системы p(x; y) и q(x; y) являются линейными выражениями от x и y.
В задачах нередко требуется решить нелинейную систему уравнений. К примеру, необходимо решить следующую систему:
Решение имеет следующий вид:
График первого уравнения будет иметь вид прямой, а второго – являться окружностью. Можно построить первый график по точкам:
Центр окружности в точке О(0; 0), радиус равен 1.
Графики пересекаются в точке А(0; 1) и в точке В(-1; 0).
Ответ: (0; 1); (-1; 0).
Можно решить систему графическим способом:
В первую очередь необходимо построить график первого уравнения, который будет представлять собой окружность с центром в точке О (0; 0) и радиусом 2. График второго уравнения является параболой, которая смещена относительно начала координат на 2 вверх, то есть ее вершина – точка (0; 2).
Графики обладают одной общей точкой А(0; 2). Данная точка является решением системы. Если подставить два числа в уравнение, можно проверить корректность ответа и записать его. Ответ: (0; 2).
В качестве еще одного примера можно решить следующую систему:
Первым шагом является построение графика первого уравнения, который будет представлять собой окружность с центром в точке О (0; 0) и радиусом 1.
Далее необходимо построить график функции:
График будет являться ломанной:
Далее следует сместить ее на 1 вниз по оси oy. В результате получится график функции:
При помещении обоих графиков в одну систему координат получится следующая ситуация:
Таким образом, получились три точки пересечения: А(1; 0), т. В(-1; 0), т. С(0; -1)
Нахождение через графическое построений функций
Любой определенный график задают с помощью соответствующей функции. Найти точки, в которых пересекаются графики, можно путем решения уравнения, имеющего вид:
(f1(x)=f2(x))
Решение данного уравнения будет являться искомой точкой.
Построить график можно с помощью бумаги и ручки. В процессе необходимо обратить внимание на то, что количество точек пересечения пары графиков определяется видом функции. Линейные функции обладают лишь одной точкой пересечения, линейная и квадратная – двумя, квадратные – двумя, либо четырьмя.
В общем случае двух линейных функций можно предположить, что:
(y1=k1x+b1)
(y2=k2x+b2)
Для поиска точки пересечения графиков необходимо решить уравнение:
(y1=y2 или k1x+b1=k2x+b2)
После преобразований получится, что:
(k1x-k2x=b2-b1.)
Далее нужно выразить x:
(x=(b2-b1)/(k1-k2).)
При известной координате точки по оси абсцисс следует определить координату по оси ординат. Таким образом, можно найти координаты точки пересечения графиков:
(((b2-b1)/(k1-k2); k1(b2-b1)/(k1-k2)+b2))
График функции y = f (х) представляет собой множество точек плоскости, координаты (х, у) которых соответствуют выражению y = f(x). График функции наглядно иллюстрирует поведение и свойства функции. Для построения графика определяют несколько значений довода х и для них рассчитывают соответствующие значения функции y=f(x). Для больше точного и наглядного построения графика следует обнаружить его точки пересечения с осями координат.
С целью определить точку пересечения графика функции с осью y, нужно определить значение функции при х=0, то есть обнаружить f(0). В качестве примера можно рассмотреть график линейной функции, изображенной на рисунке:
В данном случае при х=0 ((y=a*0+b)) функция равна b. Таким образом, график пересекает ось ординат (ось Y) в точке (0,b). Когда пересекается ось абсцисс (ось Х) функция равна 0, то есть (y=f(x)=0). Для того чтобы определить х, следует решить уравнение (f(x)=0). В случае линейной функции получаем уравнение (ax+b=0), откуда и находим (x=-b/a). В результате можно сделать вывод, что ось Х пересекается в точке ((-b/a,0).)
При наличии квадратичной зависимости y от х, уравнение (f(x)=0) обладает двумя корнями. Таким образом, ось абсцисс пересекается два раза. В случае периодической зависимости y от х, например, (y=sin(x)), график функции обладает бесконечным количеством точек пересечения с осью Х. Проверить корректность расчета координат точек, в которых пересекаются графики функций, можно с помощью подстановки найденных значений х в выражение f(x). Значение выражения при любом из вычисленных х должно быть равно 0.
Загрузить PDF
Загрузить PDF
Точка пересечения с осью Y – это точка, в которой график функции пересекает ось ординат. Найти такую точку можно несколькими способами, в зависимости от начальной информации.
-
1
Запишите значение углового коэффициента и координаты точки. Угловой коэффициент характеризует угол наклона графика по отношению к оси X. Координаты точки, лежащей на графике, записываются в виде (х,у). Если вам не даны координаты и угловой коэффициент, воспользуйтесь другим методом.
- Пример 1. Дана прямая, на которой лежит точка А (3,4) и угловой коэффициент которой равен 2. Найдите точку пересечения этой прямой с осью Y.
-
2
Запишите линейную функцию. Ее график представляет собой прямую. Линейная функция имеет вид у = kх + b, где k – угловой коэффициент, b – координата «у» точки пересечения с осью Y.
-
3
В функцию подставьте значение углового коэффициента. Подставьте данное значение вместо k.
-
Пример 1. y = kx + b
k = 2
y = 2x + b
-
Пример 1. y = kx + b
-
4
Вместо «х» и «у» подставьте данные координаты точки. Если даны координаты точки, лежащей на прямой, подставьте их в функцию вместо х и у.
-
Пример 1. Точка А (3,4) лежит на прямой. То есть х = 3, у = 4.
Подставьте эти значения в y = 2x + b
4 = 2*3 + b
-
Пример 1. Точка А (3,4) лежит на прямой. То есть х = 3, у = 4.
-
5
Найдите значение b. Напомним, что b – это координата «у» точки пересечения с осью Y. В уравнении b является единственной переменной, которую нужно обособить и найти ее значение.
-
Пример 1. 4 = 2*3 + b
4 = 6 + b
4 — 6 = b
-2 = b
Координата «у» точки пересечения с осью Y равна -2 (у = -2).
-
Пример 1. 4 = 2*3 + b
-
6
Ответ запишите в виде пары координат точки пересечения прямой с осью Y. Точка лежит на пересечении прямой и оси Y; координата «х» любой точки, лежащей на оси Y, равна 0, поэтому координата «х» точки пересечения всегда равна 0 (х = 0).
- Пример 1. Точка пересечения прямой с осью Y имеет координаты (0,-2).
Реклама
-
1
Запишите координаты двух точек, лежащих на прямой. Если координаты обеих точек не даны, воспользуйтесь другим методом. Координаты каждой точки записываются в виде (х,у).
-
2
Пример 2. Прямая проходит через точки А(1,2) и В(3,-4). Найдите точку пересечения этой прямой с осью Y.
-
3
Найдите вертикальное и горизонтальное расстояние между двумя точками. Угловой коэффициент равен тангенсу угла наклона прямой, образуемого с осью Х, и вычисляется как отношение вертикального расстояния между двумя точками к горизонтальному расстоянию между двумя точками.
- Вертикальное расстояние – это разность координат «у» двух точек.
- Горизонтальное расстояние – это разность координат «х» двух точек.
-
Пример 2. Координаты «у» двух точек: 2 и -4, поэтому вертикальное расстояние: -4 — 2 = -6.
Координаты «х» двух точек (в том же порядке): 1 и 3, поэтому вертикальное расстояние: 3 — 1 = 2.
-
4
Разделите вертикальное расстояние на горизонтальное, чтобы найти угловой коэффициент. Найденные значение подставьте в формулу: угловой коэффициент = вертикальное расстояние / горизонтальное расстояние.
- Пример 2. k = -6/2 = -3.
-
5
Запишите линейную функцию. Ее график представляет собой прямую. Линейная функция имеет вид у = kх + b, где k – угловой коэффициент, b – координата «у» точки пересечения с осью Y. Подставьте известное значение углового коэффициента k и координаты точки (х,у), чтобы найти b.
-
6
В функцию подставьте значение углового коэффициента и координаты точки. Вычисленное значение углового коэффициента подставьте вместо k. Координаты любой из данных точек подставьте вместо «х» и «у».
-
Пример 2. y= kх + b
k = -3, поэтому у = -3x + b
На прямой лежит точка А (1,2), поэтому 2 = -3*1 + b.
-
Пример 2. y= kх + b
-
7
Найдите значение b. В уравнении b является единственной переменной, которую нужно обособить и найти ее значение. Напомним, что координата «х» точки пересечения всегда равна 0.
-
Пример 2. 2 = -3*1 + b
2 = -3 + b
5 = b
Координаты точки пересечения прямой с осью Y равны (0,5).
Реклама
-
Пример 2. 2 = -3*1 + b
-
1
Запишите уравнение прямой. Если дано уравнение, описывающее прямую, можно найти точку ее пересечения с осью Y.
- Пример 3. Найти точку пересечения прямой, которая задана уравнением х + 4y = 16, с осью Y.
- Примечание: уравнение, приведенное в примере 3, описывает прямую. В конце этого раздела приведен пример квадратного уравнения (в котором переменная возводится в квадрат).
-
2
Вместо «х» подставьте 0. Напомним, что точка пересечения лежит на пересечении прямой и оси Y; координата «х» любой точки, лежащей на оси Y, равна 0, поэтому координата «х» точки пересечения всегда равна 0 (х = 0). Подставьте х = 0 в уравнение прямой.
-
Пример 3. x + 4y = 16
х = 0
0 + 4y = 16
4y = 16
-
Пример 3. x + 4y = 16
-
3
Найдите «у». Так вы вычислите координату «у» точки пересечения с осью Y.
-
Пример 3. 4y = 16
у = 4
Координаты точки пересечения прямой с осью Y равны (0,4).
-
Пример 3. 4y = 16
-
4
Проверьте ответ, построив график (если хотите). График постройте как можно более точно. Точка, в которой прямая пересекает ось Y, является точкой пересечения.
-
5
Найдите точку пересечения в случае квадратного уравнения. Переменная (в большинстве случаев «х») в квадратном уравнении возводится в квадрат. В квадратное уравнение также подставляется х = 0, но имейте в виду, что квадратное уравнение описывает параболу, которая может пересекать ось Y в одной или двух точках или вообще не пересекать ось ординат. Это значит, что задача будет иметь 1 или 2 решения или вообще не иметь решений.
Реклама
Советы
- В случае более сложного уравнения постарайтесь обособить члены с переменной «у» на одной стороне уравнения.
- В некоторых странах в уравнении y = kx + b переменные k и b обозначаются по-другому.[1]
Это не меняет значения линейной функции. - Вычисляя угловой коэффициент, вычитайте координаты «х» и координаты «у» в любом порядке, но если какая-то точка считается первой, то и ее координаты должны считаться первыми.[2]
Например, даны координаты двух точек: (1,12) и (3, 7). Угловой коэффициент вычисляется двумя способами:
Реклама
Похожие статьи
Об этой статье
Эту страницу просматривали 50 696 раз.
Была ли эта статья полезной?
В предыдущем уроке мы подробно разобрали,
как построить параболу.
В этом уроке мы разберем, как решать типовые задачи на квадратичную функцию.
Как найти нули квадратичной функции
Запомните!
Чтобы найти координаты точек нулей функции, нужно
в исходную функцию подставить вместо «y» число
ноль.
Рассмотрим задачу.
Найти нули квадратичной
функции «y = x2 − 3».
Подставим в исходную функцию вместо «y» ноль и решим полученное
квадратное уравнение.
0 = x2 − 3
x2 − 3 = 0
x1;2 =
0 ± √02 − 4 · 1 · (−3) |
2 · 1 |
x1;2 =
x1;2 =
x1;2 =
x1;2 = ±√3
Ответ: нули функции «y = x2 − 3» :
x1 = √3;
x2 = −√3 .
Как найти при каких значениях
«x» квадратичная функция принимает заданное
числовое значение
Запомните!
Чтобы найти при каких значениях «x» квадратичная функция принимает заданное числовое значение,
нужно:
- вместо «y» подставить в функцию заданное числовое значение;
- решить полученное квадратное уравнение относительно «x».
Рассмотрим задачу.
При каких значениях «x» функция
«y = x2 − x − 3» принимает значение
«−3».
Подставим в исходную функцию
«y = x2 − x − 3» вместо «y = −3» и
найдем «x».
y = x2 − x − 3
−3 = x2 − x − 3
x2 − x − 3 = −3
x2 − x − 3 + 3 = 0
x2 − x = 0
x1;2 =
1 ± √12 − 4 · 1 · 0 |
2 · 1 |
x1;2 =
x1;2 =
x1 = | x2 = |
x1 = | x2 = |
x1 = 1 | x2 = 0 |
Ответ: при «x = 0» и
«x = 1» функция «y = x2 − x − 3»
принимает значение «y = −3».
Как найти координаты точек пересечения параболы и прямой
Запомните!
Чтобы найти точки пересечения параболы с прямой нужно:
- приравнять правые части функций (те части функций, в которых содержатся «x»);
- решить полученное уравнение относительно «x»;
- подставить полученные числовые значения «x»
в любую из функций и найти координаты точек по оси «Оy».
Рассмотрим задачу.
Найти координаты точек пересечения параболы «y = x2»
и прямой «y = 3 − 2x».
Приравняем правые части функций и решим
полученное уравнение относительно «x».
x2 = 3 − 2x
x2 − 3 + 2x = 0
x2 + 2x − 3 = 0
x1;2 =
−2 ± √22 − 4 · 1 · (−3) |
2 · 1 |
x1;2 =
x1;2 =
x1;2 =
x1 = | x2 = |
x1 = | x2 = |
x1 = 1 | x2 = −3 |
Теперь подставим в любую из заданных функций (например, в
«y = 3 − 2x») полученные
числовые значения «x», чтобы найти координаты
«y» точек пересечения.
1) x = −3
y = 3 − 2x
y(−3) = 3 − 2 · (−3) = 3 − (−6) = 3 + 6 = 9
(·) A (−3; 9) — первая точка пересечения.
2) x = 1
y = 3 − 2x
y(1) = 3 − 2 · 1 = 3 − 2 = 1
(·) B (1; 1) — вторая точка пересечения.
Запишем полученные точки пересечения с их координатами в ответ.
Ответ: точки пересечения параболы
«y = x2»
и прямой «y = 3 − 2x»:
(·) A (−3; 9) и
(·) B (1; 1).
Как определить, принадлежит ли точка графику функции параболы
Запомните!
Чтобы проверить принадлежность точки параболе нет необходимости строить график функции.
Достаточно подставить координаты точки в формулу функции (координату по оси
«Ox» вместо
«x», а координату по оси
«Oy» вместо «y») и выполнить арифметические расчеты.
- Если получится верное равенство, значит, точка принадлежит графику функции.
- Если получится неверное равенство, значит, точка
не принадлежит графику функции.
Рассмотрим задачу:
Не строя графика функции «y = x2», определить, какие точки принадлежат ему:
(·) А(2; 6),
(·) B(−1; 1).
Подставим в функцию
«y = x2»
координаты точки (·) А(2; 6).
y = x2
6 = 22
6 = 4
(неверно)
Значит, точка (·) А(2; 6)
не принадлежит графику функции
«y = x2».
Подставим в функцию
«y = x2»
координаты точки (·) B(−1; 1).
y = x2
1 = (−)12
1 = 1
(верно)
Значит, точка (·) B(−1; 1)
принадлежит графику функции
«y = x2».
Как найти точки пересечения параболы с осями координат
Рассмотрим задачу
Найти координаты точек пересечения параболы
«y = x2 −3x + 2» с осями координат.
Сначала определим точки пересечения функции с осью «Ox».
На графике функции эти точки выглядят так:
Как видно на рисунке выше, координата «y» точек пересечения с осью «Ox»
равна нулю, поэтому подставим «y = 0» в
исходную функцию «y = x2 −3x + 2»
и найдем их координаты по оси «Ox».
0 = x2 −3x + 2
x2 −3x + 2 = 0
x1;2 =
3 ± √32 − 4 · 1 · 2 |
2 · 1 |
x1;2 =
x1;2 =
x1;2 =
x1 = | x2 = |
x1 = | x2 = |
x1 = 2 | x2 = 1 |
Запишем координаты точек пересечения графика с осью «Ox»:
(·) A (2; 0) и
(·) B (1; 0).
Теперь найдем координаты точки пересечения с осью «Oy».
Как видно на рисунке выше, координата «x»
точки пересечения с осью «Oy» равна нулю.
Подставим «x = 0»
в исходную функцию
«y = x2 −3x + 2»
и найдем координату точки по оси
«Oy».
y(0) = 02 − 3 · 0 + 2 = 2
Выпишем координаты полученной точки: (·) C (0; 2)
Запишем в ответ все координаты точек пересечения параболы с осями.
Ответ: точки пересечения с осью «Ox»:
(·) A (2; 0) и
(·) B (1; 0).
С осью «Oy»: (·)C (0; 2).
Как определить при каких значениях x функция принимает
положительные или
отрицательные значения
Напоминаем, что когда в задании говорится «функция принимает
значения» — речь идет о
значениях«y».
Другими словами, необходимо ответить на вопрос: при каких значениях
«x», координата
«y» положительна или отрицательна.
Запомните!
Чтобы по графику функции определить, где функция принимает положительные или отрицательные значения нужно:
- провести прямые через точки в местах, где график пересекает ось «Ox»;
- определить положительные или отрицательные значения принимает функция на промежутках между проведенными прямыми;
- записать ответ для каждого промежутка относительно «x».
Рассмотрим задачу.
С помощью графика квадратичной функции, изображенного на рисунке, ответить:
При каких значениях «x» функция принимает 1) положительные значения; 2) отрицательные значения.
Проведем через точки, где график функции пересекает ось «Ox» прямые.
Определим области, где функция принимает отрицательные или положительные значения.
Подпишем над каждой полученной областью, какие значения принимает
«x» в каждой из выделенных областей.
Ответ: при «x < −1» и
«x > 2» функция принимает отрицательные значения;
при «−1 < x < 2» функция принимает
положительные значения.
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий: