Загрузить PDF
Загрузить PDF
Площадь поверхности – это суммарная площадь всех поверхностей, которые составляют объемную фигуру. Площадь поверхности является числовой характеристикой поверхности.[1]
Вычислить площадь поверхности объемной (трехмерной) фигуры довольно просто, если знать соответствующую формулу. Существует определенная формула для каждой фигуры, поэтому сначала нужно определить, какая фигура дана. Чтобы быстро вычислять площадь поверхности, запомните соответствующие формулы для разных фигур. В данной статье рассматриваются наиболее распространенные фигуры.
-
1
Запишите формулу для вычисления площади поверхности куба. У куба шесть равных квадратных граней. Так как стороны квадрата равны, площадь квадрата равна a2, где а – сторона. Так как у куба шесть равных квадратных граней, чтобы найти площадь поверхности, умножьте площадь одной грани (квадрата) на 6. Формула для вычисления площади поверхности (SA) куба: SA = 6а2, где а – ребро куба (сторона квадрата).[2]
- Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
-
2
Измерьте ребро куба. Ребра куба равны, поэтому можно измерить только одно (любое) ребро. Ребро измерьте с помощью линейки (или рулетки). Обратите внимание на используемые единицы измерения.
- Запишите значение, обозначив его через а.
- Например: а = 2 см
-
3
Значение а возведите в квадрат. То есть возведите в квадрат длину ребра куба. Для этого умножьте значение на себя. Если вы только приступили к изучению формул с квадратами, запишите формулу так: SA = 6*а*а.
- Сейчас вы вычислили значение площади одной из граней куба.
- Например: а = 2 см
- a2 = 2 х 2 = 4 см2
-
4
Вычисленное значение умножьте на шесть. Помните, что у куба шесть равных граней. Вычислив площадь одной из граней, умножьте полученное значение на 6, чтобы включить все грани куба.
- Это последний шаг в процессе вычисления площади поверхности куба.
- Например: а 2 = 4 см2
- SA = 6 х а2 = 6 х 4 = 24 см2
Реклама
-
1
Запишите формулу для вычисления площади поверхности прямоугольной призмы. У прямоугольной призмы шесть граней, причем равными являются только противоположные грани.[3]
Поэтому формула для вычисления площади поверхности прямоугольной призмы включает значения трех разных ребер: SA = 2ab + 2bc + 2ac.- Здесь а – ширина, b – высота, с – длина призмы.
- Если проанализировать формулу, можно понять, что она суммирует площади всех граней.
- Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
-
2
Найдите значения высоты, ширины и длины призмы. Три ребра не являются равными, поэтому нужно выполнить три измерения. Измерьте соответствующие ребра с помощью линейки (или рулетки). Ребра измеряйте в одной единице измерения.
- Измерьте длину грани, которая лежит в основании призмы; длину обозначьте через с.
- Например: с = 5 см
- Измерьте ширину грани, которая лежит в основании призмы; ширину обозначьте через а.
- Например: а = 2 см
- Измерьте высоту призмы; высоту обозначьте через b.
- Например: b = 3 см
-
3
Вычислите площадь одной грани призмы, а затем полученное значение умножьте на два. Помните, что у прямоугольной призмы шесть граней, причем равными являются только противоположные грани. Умножьте длину на высоту (с на а), чтобы найти площадь одной грани. Затем полученное значение умножьте на 2, чтобы включить вторую (противоположную и равную) грань.[4]
- Например: 2 x (a x c) = 2 x (2 x 5) = 2 x 10 = 20 см2
-
4
Вычислите площадь другой грани призмы, а затем полученное значение умножьте на два. Умножьте ширину на высоту (а на b), чтобы найти площадь другой грани. Затем полученное значение умножьте на 2, чтобы включить вторую (противоположную и равную) грань.[5]
- Например: 2 x (a x b) = 2 x (2 x 3) = 2 x 6 = 12 см2
-
5
Вычислите площадь фронтальной грани, а затем полученное значение умножьте на два. Умножьте длину на ширину (с на b), чтобы найти площадь фронтальной грани. Затем полученное значение умножьте на 2, чтобы включить вторую (противоположную и равную) грань.[6]
- Например: 2 x (b x c) = 2 x (3 x 5) = 2 x 15 = 30 см2
-
6
Сложите три значения. Так как площадь поверхности – это суммарная площадь всех граней фигуры, сложите найденные значения площадей отдельных граней. Вы получите площадь поверхности прямоугольной призмы.[7]
- Например: SA = 2ab + 2bc + 2ac = 12 + 30 + 20 = 62 см2
Реклама
-
1
Запишите формулу для вычисления площади поверхности треугольной призмы. Треугольная призма имеет две равные треугольные грани и три прямоугольные грани. Чтобы вычислить площадь поверхности треугольной призмы, нужно найти площади всех граней и сложить их. Формула для вычисления площади поверхности треугольной призмы: SA = 2S + РH, где S – площадь треугольной грани, Р – периметр треугольной грани, H – высота призмы.[8]
- Здесь S – это площадь треугольника (треугольной грани), которая вычисляется по формуле S = 1/2bh, где b – основание треугольника, h – высота треугольника (которая опущена на основание).
- Р – периметр треугольника (треугольной грани), который равен сумме всех сторон треугольника.
- Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
-
2
Вычислите площадь треугольной грани и умножьте ее на два. Площадь треугольника вычисляется по формуле S = 1/2bh, где b – основание треугольника, h – высота треугольника (которая опущена на основание). Так как треугольная призма имеет две равные треугольные грани, эту формулу можно умножить на два. Поэтому, чтобы вычислить площади двух треугольных граней, просто перемножьте основание и высоту треугольника (b*h).[9]
- Основание треугольника b – это его нижняя сторона.
- Например: b = 4 см
- Высота треугольника h – это перпендикуляр, опущенный на основание из противоположной вершины.
- Например: h = 3 см
- Площадь двух треугольных граней равна: 2(1/2)b*h = b*h = 4*3 =12 см.
-
3
Измерьте каждую сторону треугольника и высоту призмы. Чтобы вычислить площадь поверхности треугольной призмы, нужно найти значение каждой стороны треугольника и высоты призмы. Высота призмы – это расстояние между треугольными гранями.
- Например: Н = 5 см
- Стороны треугольника – это три ребра одной (любой) из треугольных граней.
- Например: а = 2 см, b = 4 см, с = 6 см
-
4
Вычислите периметр треугольника. Для этого сложите все стороны треугольника: Р = а + b + с.
- Например: P = а + b + с = 2 + 4 + 6 = 12 см
-
5
Перемножьте периметр треугольной грани и высоту призмы. Помните, что высота призмы – это расстояние между треугольными гранями. Таким образом, Р умножьте на Н.
- Например: Р х Н = 12 х 5 = 60 см2
-
6
Сложите полученные значения. Чтобы найти площадь поверхности треугольной призмы, сложите два значения, вычисленные ранее.[10]
- Например: 2S + PH = 12 + 60 = 72 см2
Реклама
-
1
Запишите формулу для вычисления площади поверхности шара. Шар имеет изогнутую поверхность, поэтому формула включает математическую константу π (число Пи). Чтобы вычислить площадь поверхности шара, воспользуйтесь формулой SA = 4π*r2.[11]
- Здесь r – радиус шара, π ≈ 3,14.
- Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
-
2
Измерьте радиус шара. Радиус шара равен половине его диаметра, то есть половине отрезка, который проходит через центр шара и соединяет две точки, лежащие на его поверхности.[12]
- Например: r = 3 см
-
3
Радиус шара возведите в квадрат. Для этого умножьте значение радиуса (r) на себя. Помните, что формулу можно записать так: SA = 4π*r*r.[13]
- Например: r2 = r x r = 3 x 3 = 9 см2
-
4
Перемножьте квадрат радиуса и приблизительное значение числа Пи. Число Пи является математической константой, которая равна отношению длины окружности к ее диаметру.[14]
Это иррациональное число со множеством цифр после десятичной запятой. Зачастую число Пи округляется до 3,14. Квадрат радиуса умножьте на π (на 3,14), чтобы вычислить площадь круглого сечения шара. [15]
- Например: π*r2 = 3,14 x 9 = 28,26 см2
-
5
Полученное значение умножьте на четыре. Чтобы найти значение площади поверхности сферы, площадь круглого сечения умножьте на 4.[16]
- Например: 4π*r2 = 4 x 28,26 = 113,04 см2
Реклама
-
1
Запишите формулу для вычисления площади поверхности цилиндра. Цилиндрическая поверхность этой фигуры ограничена двумя круглыми параллельными плоскостями, которые называются основаниями. Формула для вычисления площади поверхности цилиндра: SA = 2π*r2 + 2π*rh, где r – радиус основания, h – высота цилиндра, π ≈ 3,14.[17]
- 2π*г2 – это площадь двух оснований, а 2πrh – это площадь цилиндрической поверхности.
- Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
-
2
Измерьте радиус основания и высоту цилиндра. Радиус окружности равен половине ее диаметра, то есть половине отрезка, который проходит через центр окружности и соединяет две точки, лежащие на ней.[18]
Высота цилиндра – это расстояние между его основаниями. Измерьте и запишите радиус основания и высоту цилиндра.- Например: r = 3 см
- Например: h = 5 см
-
3
Вычислите площадь основания и умножьте ее на два. Чтобы найти площадь основания, воспользуйтесь формулой для вычисления площади круга: S = π*г2. Сначала радиус возведите в квадрат, а затем полученное значение умножьте на число Пи. Результат умножьте на два, чтобы учесть второе равное основание.[19]
- Например: площадь основания = π*r2 = 3,14 х 3 х 3 = 28,26 см2
- Например: 2π*r2 = 2 x 28,26 = 56,52 см2
-
4
Вычислите площадь цилиндрической поверхности. Для этого воспользуйтесь формулой S = 2π*rh, по которой можно найти площадь поверхности трубы. Здесь труба – это поверхность между двумя основаниями цилиндра. Перемножьте двойку, число Пи, радиус и высоту.[20]
- Например: 2π*rh = 2 x 3,14 x 3 x 5 = 94,2 см2
-
5
Сложите полученные значения. Сложите площади двух оснований и площадь цилиндрической поверхности (между двумя основаниями), чтобы вычислить общую площадь поверхности цилиндра. Обратите внимание, что при сложении этих величин получится исходная формула: SA = 2π*r2 + 2π*rh.[21]
- Например: 2π*r2 + 2π*rh = 56,52 + 94,2 = 150,72 см2
Реклама
-
1
Запишите формулу для вычисления площади поверхности квадратной пирамиды. Квадратная пирамида имеет одно квадратное основание и четыре треугольные грани. Помните, что площадь квадрата равна квадрату его стороны. Площадь треугольника равна 1/2sl (половина основания треугольника, умноженная на его высоту). Так как пирамида имеет четыре треугольные грани, нужно площадь треугольника умножить на 4. Таким образом, площадь поверхности квадратной пирамиды вычисляется по формуле: SA = s2 + 2sl.[22]
- В этой формуле s – ребро квадратной грани (сторона квадрата), l – апофема пирамиды.
- Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
-
2
Найдите значения апофемы и ребра квадратной грани. Апофема (l) – это высота треугольной грани, то есть расстояние между основанием треугольника и его вершиной. Ребро квадратной грани (s) – это сторона квадрата. Помните, что у квадрата все стороны равны, поэтому измерьте любое ребро квадратной грани, а также измерьте апофему пирамиды.[23]
- Например: l = 3 см
- Например: s = 1 см
-
3
Найдите площадь квадратной грани. Для этого возведите в квадрат ребро этой грани (сторону квадрата), то есть умножьте значение s на себя.[24]
- Например: s2 = s х s = 1 х 1 = 1 см2
-
4
Вычислите общую площадь четырех треугольных граней. Вторая часть формулы включает суммарную площадь четырех треугольных граней. Согласно формуле 2ls, перемножьте 2, s и l. Так вы найдете суммарную площадь 4-х треугольных граней.[25]
- Например: 2 х s х l = 2 х 1 х 3 = 6 см2
-
5
Сложите полученные значения. Сложите площадь квадратной грани и общую площадь четырех треугольных граней, чтобы вычислить площадь поверхности пирамиды.[26]
- Например: s2 + 2sl = 1 + 6 = 7 см2
Реклама
-
1
Запишите формулу для вычисления площади поверхности конуса. Конус имеет круглое основание и закругленную боковую поверхность, которая сужается в вершине этой фигуры. Чтобы найти площадь поверхности конуса, нужно вычислить значения площади круглого основания и площади боковой поверхности, а затем сложить эти значения. Формула для вычисления площади поверхности конуса: SA = π*r2 + π*rl, где r – радиус круглого основания, l – образующая (расстояние между вершиной конуса и точкой, которая лежит на окружности круга), π ≈ 3,14.[27]
- Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
-
2
Измерьте радиус основания и высоту конуса. Радиус – это отрезок, соединяющий центр круга и точку, которая лежит на его окружности. Высота – это расстояние между центром круга и высотой конуса.[28]
- Например: r = 2 см
- Например: h = 4 см
-
3
Найдите значение образующей конуса (l). Образующая конуса является гипотенузой треугольника, поэтому воспользуйтесь теоремой Пифагора, чтобы вычислить образующую: l = √(r2 + h2), где r – радиус круглого основания, h – высота конуса.[29]
- Например: l = √(r2 + h2) = √(2 х 2 + 4 х 4) = √(4 + 16) = √(20) = 4,47 см
-
4
Вычислите площадь круглого основания. Площадь круга вычисляется по формуле S = π*r2. Измерив радиус, возведите его в квадрат (умножьте r на себя), а затем квадрат радиуса умножьте на число Пи.[30]
- Например: π*r2 = 3,14 x 2 x 2 = 12,56 см2
-
5
Вычислите площадь боковой поверхности конуса. Сделайте это по формуле S = π*rl, где r – радиус круга, l – образующая, которая найдена ранее.[31]
- Например: π*rl = 3,14 x 2 x 4,47 = 28,07 см
-
6
Сложите полученные значения, чтобы найти площадь поверхности конуса. Площадь поверхности конуса равна сумме площади круглого основания и площади боковой поверхности конуса.[32]
- Например: π*r2 + π*rl = 12,56 + 28,07 = 40,63 см2
Реклама
Что вам понадобится
- Линейка
- Ручка или карандаш
- Бумага
Об этой статье
Эту страницу просматривали 70 137 раз.
Была ли эта статья полезной?
Download Article
Download Article
Surface area is the total amount of space that all of the surfaces of an object take up. It is the sum of the area of all the surfaces of that object.[1]
Finding the surface area of a three-dimensional shape is moderately easy as long as you know the correct formula. Each shape has its own separate formula, so you’ll first need to identify the shape you’re working with. Memorizing the surface area formula for various objects can make calculations easier in the future. Here are a few of the most common shapes you might encounter.
-
1
Define the formula for surface area of a cube. A cube has six identical square sides. Because both the length and width of a square are equal, the area of a square is a2, where a is the length of a side. Since there are 6 identical sides of a cube, to find the surface area, simply multiply the area of one side times 6. The formula for surface area (SA) of a cube is SA = 6a2, where a is the length of one side.[2]
- The units of surface area will be some unit of length squared: in2, cm2, m2, etc.
-
2
Measure the length of one side. Each side or edge of a cube should, by definition, be equal in length to the others, so you only need to measure one side. Using a ruler, measure the length of the side. Pay attention to the units you are using.
- Mark this measurement down as a.
- Example: a = 2 cm
Advertisement
-
3
Square your measurement for a. Square the measurement taken for the length of the edge. To square a measurement means to multiply it by itself. When you are first learning these formulas, it might be helpful to write it as SA= 6*a*a.
- Note that this step calculates the area of one side of the cube.
- Example: a = 2 cm
- a2 = 2 x 2 = 4 cm2
-
4
Multiply this product by six. Remember, a cube has six identical sides. Now that you have the area of one side, you need to multiply it by six to account for all six sides.
- This step completes the calculation for the cube’s surface area.
- Example: a2 = 4 cm2
- Surface Area = 6 x a2 = 6 x 4 = 24 cm2
Advertisement
-
1
Define the formula for surface are of a rectangular prism. Like a cube, a rectangular prism has six sides, but unlike a cube, the sides are not identical. In a rectangular prism, only opposite sides are equal.[3]
Because of this, the surface of a rectangular prism must take into account the various side lengths making the formula SA = 2ab + 2bc + 2ac.- For this formula, a equals the width of the prism, b equals the height, and c equals the length.
- Breaking down the formula, you can see that you are simply adding up all of the areas of each face of the object.
- The units of surface area will be some unit of length squared: in2, cm2, m2, etc.
-
2
Measure the length, height, and width of each side. All three measurements can vary, so all three need to be taken separately. Using a ruler, measure each side and write it down. Use the same units for each measurement.
- Measure the length of the base to determine the length of the prism, and assign this to c.
- Example: c = 5 cm
- Measure the width of the base to determine the width of the prism, and assign this to a.
- Example: a = 2 cm
- Measure the height of the side to determine the height of the prism, and assign this to b.
- Example: b = 3 cm
-
3
Calculate the area of one of the sides of the prism, then multiply by two. Remember, there are 6 faces of a rectangular prism, but opposite sides are identical. Multiply the length and height, or c and a to find the area of one face. Take this measurement and multiply it by two to account for the opposite identical side.[4]
- Example: 2 x (a x c) = 2 x (2 x 5) = 2 x 10 = 20 cm2
-
4
Find the area of the other side of the prism and multiply by two. Like with the first pair of faces, multiply the width and height, or a and b to find the area of another face of the prism. Multiply this measurement by two to account for the opposite identical sides.[5]
- Example: 2 x (a x b) = 2 x (2 x 3) = 2 x 6 = 12 cm2
-
5
Calculate the area of the ends of the prism and multiply by two. The final two faces of the prism will be the ends. Multiply the length and width, or c and b to find their area. Multiply this measurement by two to account for both sides.[6]
- Example: 2 x (b x c) = 2 x (3 x 5) = 2 x 15 = 30 cm2
-
6
Add the three separate measurements together. Because surface area is the total area of all of the faces of an object, the final step is to add all of the individually calculated areas together. Add the area measurements for all the sides together to find the total surface area.[7]
- Example: Surface Area = 2ab + 2bc + 2ac = 12 + 30 + 20 = 62 cm2.
Advertisement
-
1
Define the surface area formula for a triangular prism. A triangular prism has two identical triangular sides and three rectangular faces. To find the surface area, you must calculate the area of all of the sides and add them together. The surface area of a triangular prism is SA = 2A + PH, where A is the area of the triangular base, P is the perimeter of the triangular base, and h is the height of the prism.
- For this formula, A is the area of a triangle which is A = 1/2bh where b is the base of the triangle and h is the height.
- P is simply the perimeter of the triangle which is calculated by adding all three sides of the triangle together.
- The units of surface area will be some unit of length squared: in2, cm2, m2, etc.
-
2
Calculate the area of the triangular face and multiply by two. The area of a triangle is 1/2b*h where b is the base of the triangle and h is the height. Because there are two identical triangle faces we can multiply the formula by two. This makes the calculation for both faces simply, b*h.
- The base, b, equals the length of the bottom of the triangle.
- Example: b = 4 cm
- The height, h, of the triangular base equals the distance between the bottom edge and the top peak.
- Example: h = 3 cm
- Area of the one triangle multiplied by 2= 2(1/2)b*h = b*h = 4*3 =12 cm
-
3
Measure each side of the triangle and the height of the prism. To finish the surface area calculation, you need to know the length of each side of the triangle and the height of the prism. The height is the distance between the two triangular faces.
- Example: H = 5 cm
- The three sides refer to the three sides of the triangular base.
- Example: S1 = 2 cm, S2 = 4 cm, S3 = 6 cm
-
4
Determine the perimeter of the triangle. The perimeter of the triangle can be calculated simply by adding up all of the measured sides: S1 + S2 + S3.
- Example: P = S1 + S2 + S3 = 2 + 4 + 6 = 12 cm
-
5
Multiply the perimeter of the base by the height of the prism. Remember, the height of the prism is distance between the two triangular bases. In other words, multiply P by H.
- Example: P x H = 12 x 5 = 60 cm2
-
6
Add the two separate measurements together. You will need to add the two measurements from the previous two steps together to calculate the triangular prism’s surface area.
- Example: 2A + PH = 12 + 60 = 72 cm2.
Advertisement
-
1
Define the surface area formula for a sphere. A sphere has a curved surface and therefore the surface area must use the mathematical constant, pi. The surface area of a sphere is given by the equation SA = 4π*r2.[8]
- For this formula, r equals the radius of the sphere. Pi, or π, should be approximated to 3.14.
- The units of surface area will be some unit of length squared: in2, cm2, m2, etc.
-
2
Measure the radius of the sphere. The radius of the sphere is half the diameter, or half the distance from one side of the center of the sphere to the other.[9]
- Example: r = 3 cm
-
3
Square the radius. To square a number, simply multiply it by itself. Multiply the measurement for r by itself. Remember, this formula can be rewritten as SA = 4π*r*r.[10]
- Example: r2 = r x r = 3 x 3 = 9 cm2
-
4
Multiply the squared radius by an approximation of pi. Pi is a constant that represents the ratio of a circle’s circumference to its diameter.[11]
It is an irrational number that has many decimal digits. It is frequently approximated as 3.14. Multiply the squared radius by π, or 3.14, to find the area of one circular section of the sphere.[12]
- Example: π*r2 = 3.14 x 9 = 28.26 cm2
-
5
Multiply this product by four. To complete the calculation, multiply by 4. Find the surface area of the sphere by multiplying the flat circular area by four.[13]
- Example: 4π*r2 = 4 x 28.26 = 113.04 cm2
Advertisement
-
1
Define the surface area formula for a cylinder. A cylinder has two circular ends enclosing a rounded surface. The formula for surface area of a cylinder is SA = 2π*r2 + 2π*rh, where r equals the radius of the circular base and h equals the height of the cylinder. Round pi or π off to 3.14.[14]
- 2π*r2 represents the surface area of the two circular ends while 2πrh is the surface area of the column connecting the two ends.
- The units of surface area will be some unit of length squared: in2, cm2, m2, etc.
-
2
Measure the radius and height of the cylinder. The radius of a circle is half of the diameter, or half the distance from one side of the center of the circle to the other.[15]
The height is the total distance of the cylinder from end to end. Using a ruler, take these measurements and write them down.- Example: r = 3 cm
- Example: h = 5 cm
-
3
Find the area of the base and multiply by two. To find the area of the base, you simply use the formula for area of circle, or π*r2. To complete the calculation, square the radius and multiply by pi. Multiply by two to take into account the second identical circle on the other end of the cylinder.[16]
- Example: Area of base = π*r2 = 3.14 x 3 x 3 = 28.26 cm2
- Example: 2π*r2 = 2 x 28.26 = 56.52 cm2
-
4
Calculate the surface area of the cylinder itself, using 2π*rh. This is the formula to calculate the surface area of a tube. The tube is the space between the two circular ends of the cylinder. Multiply the radius by two, pi, and the height.[17]
- Example: 2π*rh = 2 x 3.14 x 3 x 5 = 94.2 cm2
-
5
Add the two separate measurements together. Add the surface area of the two circles to the surface area of the space between the two circles to calculate the total surface area of the cylinder. Note, adding these two pieces together allows you to recognize the original formula: SA =2π*r2 + 2π*rh.[18]
- Example: 2π*r2 + 2π*rh = 56.52 + 94.2 = 150.72 cm2
Advertisement
-
1
Define the surface area formula for a square pyramid. A square pyramid has a square base and four triangular sides. It is defined as the total lateral area of the base. Remember, the area of the square is the length of one side squared. The area of a triangle is 1/2sl (side of the triangle times the length or height of the triangle). Because there are four triangles, to find the total surface area, you must multiply by four. Adding all of these faces together yields the equation of surface area for a square pyramid: SA = s2 + 2sl.[19]
- For this equation, s refers to the length of each side of the square base and l refers to the slant height of each triangular side.
- The units of surface area will be some unit of length squared: in2, cm2, m2, etc.
-
2
Measure the slant height and base side. The slant height, l, is the height of one of the triangular sides. It is the distance between the base to the peak of the pyramid as measured along one flat side. The base side, s, is the length of one side of the square base. Because the base is square, this measurement is the same for all sides. Use a ruler to make each measurement.[20]
- Example: l = 3 cm
- Example: s = 1 cm
-
3
Find the area of the square base. The area of a square base can be calculated by squaring the length of one side, or multiplying s by itself.[21]
- Example: s2 = s x s = 1 x 1 = 1 cm2
-
4
Calculate the total area of the four triangular faces. The second part of the equation involves the surface area of the remaining four triangular sides. Using the formula 2ls, multiply s by l and two. Doing so will allow you to find the area of each side.[22]
- Example: 2 x s x l = 2 x 1 x 3 = 6 cm2
-
5
Add the two separate areas together. Add the total area of the sides to the area of the base to calculate the total surface area.[23]
- Example: s2 + 2sl = 1 + 6 = 7 cm2
Advertisement
-
1
Define the surface area formula for a cone. A cone has a circular base and a rounded surface that tapers into a point. To find the surface area, you need to calculate the area of the circular base and the surface of the cone and add these two together. The formula for surface area of a cone is: SA = π*r2 + π*rl, where r is the radius of the circular base, l is the slant height of the cone, and π is the mathematical constant pi (3.14).[24]
- The units of surface area will be some unit of length squared: in2, cm2, m2, etc.
-
2
Measure the radius and height of the cone. The radius is the distance from the center of the circular base to the side of the base. The height is the distance from the center of the base to the top peak of the cone, as measured through the center of the cone.[25]
- Example: r = 2 cm
- Example: h = 4 cm
-
3
Calculate the slant height (l) of the cone. Because the slant height is actually the hypotenuse of a triangle, you must use the Pythagorean Theorem to calculate it. Use the rearranged form, l = √ (r2 + h2), where r is the radius and h is the height of the cone. [26]
- Example: l = √ (r2 + h2) = √ (2 x 2 + 4 x 4) = √ (4 + 16) = √ (20) = 4.47 cm
-
4
Determine the area of the circular base. The area of the base is calculated with the formula π*r2. After measuring the radius, square it (multiply it by itself) and then multiply that product by pi.[27]
- Example: π*r2 = 3.14 x 2 x 2 = 12.56 cm2
-
5
Calculate the surface area of the top of the cone. Using the formula π*rl, where r is the radius of the circle and l is the slant height previously calculated, you can find the surface area of the top part of the cone.[28]
- Example: π*rl = 3.14 x 2 x 4.47 = 28.07 cm
-
6
Add two areas together to find total surface area. Calculate the final surface area of your cone by adding the area of the circular base to the calculation from the previous step.[29]
- Example: π*r2 + π*rl = 12.56 + 28.07 = 40.63 cm2
Advertisement
Add New Question
-
Question
How do I find the surface area for something that is «L»-shaped? Is there a formula?
Let’s assume we’re considering a three-dimensional, rectilinear object in the shape of an «L» and that we know the dimensions of all ten sides. There is no formula other than to add together the areas of all the sides. All sides are rectangles or squares, so in each case the area of a side is simply length multiplied by width.
-
Question
How do I solve problems involving capacity?
Volume («capacity») always involves three dimensions, typically length, width, and height (or depth). To calculate volume, multiply the three dimensions together.
-
Question
How do I find it as an irregular shape?
In general, it is not possible to calculate the surface area of an irregular shape unless all of its surface dimensions are known.
See more answers
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement
Things You’ll Need
- Ruler
- Writing utensil
- Paper
References
About This Article
Article SummaryX
To find surface area for a rectangular prism, use the formula SA = 2ab + 2bc + 2ac, where a is the width, b is the height, and c is the length. If you’re trying to find the surface area of a triangular prism, use the formula SA = 2a + ph, where a is the area of the triangle, p is the perimeter, and h is the height. To find the surface area of a cube, use the formula SA = 6a^2, where a is the length. If you need to learn how to find the surface area of a sphere or pyramid, keep reading the article!
Did this summary help you?
Thanks to all authors for creating a page that has been read 307,205 times.
Reader Success Stories
-
Christine Meleg
Jul 3, 2017
«I am sewing a Quilt of Valor for my great nephew, an active member of the U.S. Marine Corps. I need to calculate…» more
Did this article help you?
Площади поверхностей геометрических тел — определение и примеры с решением
Содержание:
Площади поверхностей геометрических тел:
Под площадью поверхности многогранника мы понимаем сумму площадей всех его граней. Как же определить площадь поверхности тела, не являющегося многогранником? На практике это делают так. Разбивают поверхность на такие части, которые уже мало отличаются от плоских. Тогда находят площади этих частей, как будто они являются плоскими. Сумма полученных площадей является приближенной площадью поверхности. Например, площадь крыши здания определяется как сумма площадей кусков листового металла. Еще лучше это видно на примере Земли. Приблизительно она имеет форму шара. Но площади небольших ее участков измеряют так, как будто эти участки являются плоскими. Более того, под площадью поверхности тела будем понимать предел площадей полных поверхностей описанных около него многогранников. При этом должно выполняться условие, при котором все точки поверхности этих многогранников становятся сколь угодно близкими к поверхности данного тела. Для конкретных тел вращения понятие описанного многогранника будет уточнено.
Понятие площади поверхности
Рассмотрим периметры
Применим данные соотношения к обоснованию формулы для площади боковой поверхности цилиндра.
При вычислении объема цилиндра были использованы правильные вписанные в него призмы. Найдем при помощи в чем-то аналогичных рассуждений площадь боковой поверхности цилиндра.
Опишем около данного цилиндра радиуса R и высоты h правильную n-угольную призму (рис. 220).
Площадь боковой поверхности призмы равна
где — периметр основания призмы.
При неограниченном возрастании n получим:
так как периметры оснований призмы стремятся к длине окружности основания цилиндра, то есть к
Учитывая, что сумма площадей двух оснований призмы стремится к , получаем, что площадь полной поверхности цилиндра равна
. Но сумма площадей двух оснований цилиндра равна
. Поэтому найденную величину S принимают за площадь боковой поверхности цилиндра.
Итак, площадь боковой поверхности цилиндра вычисляется по формуле
где R — радиус цилиндра, h — его высота.
Заметим, что эта формула аналогична соответствующей формуле площади боковой поверхности прямой призмы
За площадь полной поверхности цилиндра принимается сумма площадей боковой поверхности и двух оснований:
Если боковую поверхность цилиндра радиуса R и высоты h разрезать по образующей АВ и развернуть на плоскость, то в результате получим прямоугольник который называется разверткой боковой поверхности цилиндра (рис. 221).
Очевидно, что сторона этого прямоугольника есть развертка окружности основания цилиндра, следовательно,
. Сторона АВ равна образующей цилиндра, то есть АВ = h. Значит, площадь развертки боковой поверхности цилиндра равна
. Таким образом, площадь боковой поверхности цилиндра равна площади ее развертки.
Пример:
Параллельно оси цилиндра на расстоянии d от нее проведена плоскость, отсекающая от основания дугу . Диагональ полученного сечения наклонена к плоскости основания под углом а. Определите площадь боковой поверхности цилиндра.
Решение:
Пусть дан цилиндр, в основаниях которого лежат равные круги с центрами
— ось цилиндра. Рассмотрим плоскость, параллельную
. Сечение цилиндра данной плоскостью представляет собой прямоугольник
(рис. 222).
Пусть хорда АВ отсекает от окружности основания дугу . Тогда, по определению,
. Так как образующие цилиндра перпендикулярны основаниям,
. Значит, АВ — проекция
на плоскость АОВ, тогда угол между
и плоскостью АОВ равен углу
. По условию
.
В равнобедренном треугольнике проведем медиану ОК. Тогда O
Так как
то
по признаку перпендикулярных плоскостей. Но тогда
по свойству перпендикулярных плоскостей. Значит, ОК — расстояние между точкой О и плоскостью
. Учитывая, что
, по определению расстояния между параллельными прямой и плоскостью получаем, что ОК равно расстоянию между
и плоскостью
. По условию OK = d. Из прямоугольного треугольника АКО
имеем:
откуда Из прямоугольного треугольника
Итак,
В случае, когда
Аналогично предыдущему, и в этом случае получаем тот же результат для площади боковой поверхности.
Ответ:
Площадь поверхности конуса и усеченного конуса
Связь между цилиндрами и призмами полностью аналогична связи между конусами и пирамидами. В частности, это касается формул для площадей их боковых поверхностей.
Опишем около данного конуса с радиусом основания R и образующей I правильную л-угольную пирамиду (рис. 223). Площадь ее боковой поверхности равна
где — периметр основания пирамиды,
— апофема.
При неограниченном возрастании n получим:
так как периметры оснований пирамиды стремятся к длине окружности основания конуса, а апофемы равны I.
Учитывая, что площадь основания пирамиды стремится к , получаем, что площадь полной поверхности конуса равна
. Но площадь основания конуса равна
. Поэтому найденную величину S принимают за площадь боковой поверхности конуса. Итак, площадь боковой поверхности конуса вычисляется по формуле
где R — радиус основания, I — образующая.
За площадь полной поверхности конуса принимается сумма площадей его основания и боковой поверхности:
Если боковую поверхность конуса разрезать по образующей РА и развернуть на плоскость, то в результате получим круговой сектор который называется разверткой боковой поверхности конуса (рис. 224).
Очевидно, что радиус сектора развертки равен образующей конуса I, а длина дуги — длине окружности основания конуса, то есть
. Учитывая, что площадь соответствующего круга равна
, получаем:
, значит,
Таким образом, площадь боковой поверхности конуса равна площади ее развертки.
Учитывая формулу для площади боковой поверхности конуса, нетрудно найти площадь боковой поверхности усеченного конуса.
Рассмотрим усеченный конус, полученный при пересечении конуса с вершиной Р некоторой секущей плоскостью (рис. 225).
Пусть — образующая усеченного конуса
точки
— центры большего и меньшего оснований с радиусами R и г соответственно. Тогда площадь боковой поверхности усеченного конуса равна разности площадей боковых поверхностей двух конусов:
Из подобия треугольников
следует, что
Тогда получаем
Таким образом,
Итак, мы получили формулу для вычисления площади боковой поверхности усеченного конуса: , где R и г — радиусы оснований усеченного конуса, I — его образующая.
Отсюда ясно, что площадь полной поверхности усеченного конуса равна
Такой же результат можно было бы получить, если найти площадь развертки боковой поверхности усеченного конуса или использовать правильные усеченные пирамиды, описанные около него. Попробуйте дать соответствующие определения и провести необходимые рассуждения самостоятельно.
Связь между площадями поверхностей и объемами
При рассмотрении объемов и площадей поверхностей цилиндра и конуса мы видели, что существует тесная взаимосвязь между этими фигурами и призмами и пирамидами соответственно. Оказывается, что и сфера (шар), вписанная в многогранник, связана с величиной его объема.
Определение:
Сфера (шар) называется вписанной в выпуклый многогранник, если она касается каждой его грани.
При этом многогранник называется описанным около данной сферы (рис. 226).
Рассмотрим, например, сферу, вписанную в тетраэдр (рис. 227).
Плоскости, содержащие грани тетраэдра, являются касательными к вписанной сфере, а точки касания лежат в гранях тетраэдра. Заметим, что по доказанному в п. 14.2 радиусы вписанной сферы, проведенные в точку касания с поверхностью многогранника, перпендикулярны плоскостям граней этого многогранника.
Для описанных многоугольников на плоскости было доказано, что их площадь равна произведению полупериметра на радиус вписанной окружности. Аналогичное свойство связывает объем описанного многогранника и площадь его поверхности.
Теорема (о связи площади поверхности и объема описанного многогранника)
Объем описанного многогранника вычисляется по формуле
где — площадь полной поверхности многогранника, г — радиус вписанной сферы.
Соединим центр вписанной сферы О со всеми вершинами многогранника (рис. 228). Получим n пирамид, основаниями которых являются грани многогранника, вершины совпадают с точкой О, высоты равны г. Тогда объем многогранника, по аксиоме, равен сумме объемов этих пирамид. Используя формулу объема пирамиды, найдем объем данного многогранника:
где — площади граней многогранника.
Оказывается, что в любой тетраэдр можно вписать сферу, и только одну. Но не каждый выпуклый многогранник обладает этим свойством.
Рассматривают также сферы, описанные около многогранника.
Определение:
Сфера называется описанной около многогранника, если все его вершины лежат на сфере.
При этом многогранник называется вписанным в сферу (рис. 229).
Также считается, что соответствующий шар описан около многогранника.
Около любого тетраэдра можно описать единственную сферу, но не каждый многогранник обладает соответствующим свойством.
Площадь сферы
Применим полученную связь для объемов и площадей поверхностей описанных многогранников к выводу формулы площади сферы.
Опишем около сферы радиуса R выпуклый многогранник (рис. 230).
Пусть S’ — площадь полной поверхности данного многогранника, а любые две точки одной грани удалены друг от друга меньше чем на е. Тогда объем многогранника равен. Рассмотрим расстояние от центра сферы О до любой вершины многогранника, например А1 (рис. 231).
По неравенству треугольника
где О’ — точка касания. Отсюда следует, что все вершины данного многогранника лежат внутри шара с центром О и радиусом
.
Итак, объем V данного многогранника больше объема шара радиуса R и меньше объема шара радиуса , то есть
Отсюда получаем
Если неограниченно уменьшать размеры граней многогранника, то есть при е, стремящемся к нулю, левая и правая части последнего неравенства будут стремиться к , а многогранник все плотнее примыкать к сфере. Поэтому полученную величину для предела S’ принимают за площадь сферы.
Итак, площадь сферы радиуса R вычисляется по формуле
Доказанная формула означает, что площадь сферы равна четырем площадям ее большого круга (рис. 232).
Исходя из аналогичных рассуждений, можно получить формулу для площади сферической части шарового сегмента с высотой Н:
Оказывается, что эта формула справедлива и для площади сферической поверхности шарового слоя (пояса):
где Н — высота слоя (пояса).
Справочный материал
Формулы объемов и площадей поверхностей геометрических тел
Историческая справка
Многие формулы для вычисления объемов многогранников были известны уже в Древнем Египте. В так называемом Московском папирусе, созданном около 4000 лет назад, вероятно, впервые в истории вычисляется объем усеченной пирамиды. Но четкие доказательства большинства формул для объемов появились позднее, в работах древнегреческих ученых.
Так, доказательства формул для объемов конуса и пирамиды связаны с именами Демокрита из Абдеры (ок. 460-370 гг. до н. э.) и Евдокса Книдского (ок. 408-355 гг. до н. э.). На основании их идей выдающийся математик и механик Архимед (287-212 гг. до н. э.) вычислил объем шара, нашел формулы для площадей поверхностей цилиндра, конуса, сферьГг
Дальнейшее развитие методы, предложенные Архимедом, получили благодаря трудам средневекового итальянского монаха и математика Бонавентуры Кавальери (1598-1647). В своей книге «Геометрия неделимых» он сформулировал принцип сравнения объемов, при котором используются площади сечений. Его рассуждения стали основой интегральных методов вычисления объемов, разработанных Исааком Ньютоном (1642 (1643)-1727) и Готфридом Вильгельмом фон Лейбницем (1646-1716). Во многих учебниках по геометрии объем пирамиды находится с помощью * чертовой лестницы» — варианта древнегреческого метода вычерпывания, предложенного французским математиком А. М. Лежандром (1752-1833).
На II Международном конгрессе математиков, который состоялся в 1900 году в Париже, Давид Гильберт сформулировал, в частности, такую проблему: верно ли, что любые два равновеликих многогранника являются равносоставленными? Уже через год отрицательный ответ на этот вопрос был обоснован учеником Гильберта Максом Деном (1878-1952). Другое доказательство этого факта предложил в 1903 году известный геометр В. Ф. Каган, который в начале XX века вел плодотворную научную и просветительскую деятельность в Одессе. В частности, из работ Дена и Кагана следует, что доказательство формулы объема пирамиды невозможно без применения пределов.
Весомый вклад в развитие теории площадей поверхностей внесли немецкие математики XIX века. Так, в 1890 году Карл Герман Аман-дус Шварц (1843-1921) построил пример последовательности многогранных поверхностей, вписанных в боковую поверхность цилиндра («сапог Шварца»). Уменьшение их граней не приводит к приближению суммы площадей этих граней к площади боковой поверхности цилиндра. Это стало толчком к созданию выдающимся немецким математиком и физиком Германом Минков-ским (1864-1909) современной теории площадей поверхностей, в которой последние связаны с объемом слоя около данной поверхности.
Учитывая огромный вклад Архимеда в развитие математики, в частности теории объемов и площадей поверхностей, именно его изобразили на Филдсовской медали — самой почетной в мире награде для молодых математиков. В 1990 году ею был награжден Владимир Дрин-фельд (род. в 1954 г.), который учился и некоторое время работал в Харькове. Вот так юные таланты, успешно изучающие геометрию в школе, становятся в дальнейшем всемирно известными учеными.
Уравнения фигур в пространстве
Напомним, что уравнением фигуры F на плоскости называется уравнение, которому удовлетворяют координаты любой точки фигуры F и не удовлетворяют координаты ни одной точки, не принадлежащей фигуре F. Так же определяют и уравнение фигуры в пространстве; но, в отличие от плоскости, где уравнение фигуры содержит две переменные х и у, в пространстве уравнение фигуры является уравнением с тремя переменными х, у и z.
Выведем уравнение плоскости, прямой и сферы в пространстве. Для получения уравнения плоскости рассмотрим в прямоугольной системе координат плоскость а (рис. 233) и определим свойство, с помощью которого можно описать принадлежность произвольной точки данной плоскости. Пусть ненулевой вектор перпендикулярен а (то есть принадлежит прямой, перпендикулярной данной плоскости,— такой вектор называют вектором нормали или нормалью к плоскости а), а точка
принадлежит данной плоскости.
Так как , то вектор га перпендикулярен любому вектору плоскости а. Поэтому если
— произвольная точка плоскости а, то
, то есть
. Более того, если векторы
перпендикулярны, то, поскольку плоскость, проходящая через точку М0 перпендикулярно вектору
, единственна, имеем
, то есть
. Таким образом, уравнение
— критерий принадлежности точки М плоскости а. На основании этого векторного критерия выведем уравнение плоскости в пространстве.
Теорема (уравнение плоскости в пространстве)
В прямоугольной системе координат уравнение плоскости имеет вид , где А, В, С и D — некоторые числа, причем числа А, В и С одновременно не равны нулю.
Запишем в координатной форме векторное равенство , где
— вектор нормали к данной плоскости,
— фиксированная точка плоскости, M(x;y;z) — произвольная точка плоскости. Имеем
Следовательно,
После раскрытия скобок и приведения подобных членов это уравнение примет вид:
Обозначив числовое выражение в скобках через D, получим искомое уравнение, в котором числа А, В и С одновременно не равны нулю, так как .
Покажем теперь, что любое уравнение вида Ах + Ву +Cz+D = 0 задает в пространстве плоскость. Действительно, пусть — одно из решений данного уравнения. Тогда
. Вычитая это равенство из данного, получим
Так как это уравнение является координатной записью векторного равенства
, то оно является уравнением плоскости, проходящей через точку
перпендикулярно вектору
.
Обратим внимание на то, что в доказательстве теоремы приведен способ составления уравнения плоскости по данным координатам произвольной точки плоскости и вектора нормали.
Пример:
Напишите уравнение плоскости, которая перпендикулярна отрезку MN и проходит через его середину, если М<-1;2;3), N(5;-4;-1).
Решение:
Найдем координаты точки О — середины отрезка MN:
Значит, О (2; -1; l). Так как данная плоскость перпендикулярна отрезку MN, то вектор — вектор нормали к данной плоскости. Поэтому искомое уравнение имеет вид:
.
И наконец, так как данная плоскость проходит через точку О(2;-l;l), то, подставив координаты этой точки в уравнение, получим:
Таким образом, уравнение искомое.
Ответ:
Заметим, что правильным ответом в данной задаче является также любое уравнение, полученное из приведенного умножением обеих частей на число, отличное от нуля.
Значения коэффициентов А, В, С и D в уравнении плоскости определяют особенности расположения плоскости в системе координат. В частности:
- если
, уравнение плоскости примет вид Ax+By+Cz = 0; очевидно, что такая плоскость проходит через начало координат (рис. 234, а);
- если один из коэффициентов А, В и С равен нулю, a
, плоскость параллельна одной из координатных осей: например, при условии А = 0 вектор нормали
перпендикулярен оси Ох, а плоскость By + Cz + D = Q параллельна оси Ох (рис. 234, б)
- если два из коэффициентов А, В и С равны нулю, а
, плоскость параллельна одной из координатных плоскостей: например, при условиях А = 0 и В-О вектор нормали
перпендикулярен плоскости Оху, а плоскость Cz+D = 0 параллельна плоскости Оху (рис. 234, в);
- если два из коэффициентов А, В и С равны нулю и D = 0, плоскость совпадает с одной из координатных плоскостей: например, при условиях
и В = С = D = 0 уравнение плоскости имеет вид Ах = О, или х= 0, то есть является уравнением плоскости Оуz (рис. 234, г).
Предлагаем вам самостоятельно составить полную таблицу частных случаев расположения плоскости Ax + By+Cz+D = 0 в прямоугольной системе координат в зависимости от значений коэффициентов А, В, С и D.
Пример: (о расстоянии от точки до плоскости)
Расстояние от точки до плоскости а, заданной уравнением Ax + By + Cz+D = О, вычисляется по формуле
Докажите.
Решение:
Если , то по уравнению плоскости
, откуда
= 0.
Если , то проведем перпендикуляр КМ к плоскости a,
.
Тогда , поэтому
, то есть
. Так как
, то
, откуда
Таким образом,
Рассмотрим теперь возможность описания прямой в пространстве с помощью уравнений.
Пусть в пространстве дана прямая k (рис. 235). Выберем ненулевой вектор , параллельный данной прямой или принадлежащий ей (такой вектор называют направляющим вектором прямой k), и зафиксируем точку
, принадлежащую данной прямой. Тогда произвольная точка пространства М (х; у; z) будет принадлежать прямой k в том и только в том случае, когда векторы
коллинеарны, то есть существует число t такое, что
Представим это векторное равенство в координатной форме. Если ни одна из координат направляющего вектора не равна нулю, из данного равенства можно выразить t и приравнять полученные результаты:
Эти равенства называют каноническими уравнениями прямой в пространстве.
Пример:
Напишите уравнение прямой, проходящей через точки А(1;-3;2) и В(-l;0;l).
Решение:
Так как точки А и В принадлежат данной прямой, то — направляющий вектор прямой АВ. Таким образом, подставив вместо
координаты точки А, получим уравнение прямой АВ:
Ответ:
Заметим, что ответ в этой задаче может иметь и другой вид: так, в числителях дробей можно использовать координаты точки В, а как направляющий вектор рассматривать любой ненулевой вектор, коллинеарный (например, вектор
).
Вообще, если прямая в пространстве задана двумя точками , то
— направляющий вектор прямой, а в случае, если соответствующие координаты данных точек не совпадают, канонические уравнения прямой
имеют вид
С помощью уравнений удобно исследовать взаимное расположение прямых и плоскостей в пространстве. Рассмотрим прямые направляющими векторами
соответственно. Определение угла между данными прямыми связано с определением угла между их направляющими векторами. Действительно, пусть ф — угол между прямыми
. Так как по определению
, а угол между векторами может быть больше 90°, то
либо равен углу ср (рис. 236, а), либо дополняет его до 180° (рис. 236, б).
Так как cos(l80°-ф) = -coscp, имеем , то есть
Отсюда, в частности, следует необходимое и достаточное условие перпендикулярности прямых :
Кроме того, прямые параллельны тогда и только тогда, когда их направляющие векторы коллинеарны, то есть существует число t такое, что
, или, при условии отсутствия у векторов р и q нулевых координат,
Проанализируем теперь отдельные случаи взаимного расположения двух плоскостей в пространстве. Очевидно, что если —вектор нормали к плоскости а, то все ненулевые векторы, коллинеарные л, также являются векторами нормали к плоскости а. Из этого следует, что две плоскости, заданные уравнениями
:
- совпадают, если существует число t такое, что
, или, если числа
ненулевые
- параллельны, если существует число t такое, что
, или, если координаты
ненулевые,
(на практике это означает, что уравнения данных плоскостей можно привести к виду Ax+By+Cz+D1= 0 и Ax+By+Cz+D2=0, где
).
В остальных случаях данные плоскости пересекаются, причем угол между ними связан с углом между векторами нормалей
и
. Предлагаем вам самостоятельно обосновать формулу для определения угла между плоскостями
:
В частности, необходимое и достаточное условие перпендикулярности плоскостей выражается равенством
.
Заметим также, что прямая в пространстве может быть описана как линия пересечения двух плоскостей, то есть системой уравнений
где векторы не коллинеарны.
Пример:
Напишите уравнение плоскости, которая проходит через точку М(4;2;3) и параллельна плоскости x-y + 2z-S = 0.
Решение:
Так как искомая плоскость параллельна данной, то вектор нормали к данной плоскости является также вектором нормали к искомой плоскости. Значит, искомое уравнение имеет вид
. Так как точка М принадлежит искомой плоскости, ее координаты удовлетворяют уравнению плоскости, то есть 4-2 + 2-3 + 2) = 0, D = -8. Следовательно, уравнение x-y+2z-8=0 искомое.
Аналогично уравнению окружности на плоскости, в пространственной декартовой системе координат можно вывести уравнение сферы с заданным центром и радиусом.
Теорема (уравнение сферы)
В прямоугольной системе координат уравнение сферы радиуса R с центром в точке имеет вид
Доказательство
Пусть — произвольная точка сферы радиуса R с центром
(рис. 237). Расстояние между точками О и М вычисляется по формуле
Так как OM=R, то есть ОМ 2 = R 2 , то координаты точки М удовлетворяют уравнению . Если же точка М не является точкой сферы, то
, значит, координаты точки М не удовлетворяют данному уравнению.
Сфера радиуса R с центром в начале координат задается уравнением вида
Заметим, что фигуры в пространстве, как и на плоскости, могут задаваться не только уравнениями, но и неравенствами. Например, шар радиуса R с центром в точке задается неравенством
(убедитесь в этом самостоятельно).
Пример:
Напишите уравнение сферы с центром А (2;-8; 16), которая проходит через начало координат.
Решение:
Так как данная сфера проходит через точку 0(0;0;0), то отрезок АО является ее радиусом. Значит,
Таким образом, искомое уравнение имеет вид:
Ответ:
Доказательство формулы объема прямоугольного параллелепипеда
Теорема (формула объема прямоугольного параллелепипеда)
Объем прямоугольного параллелепипеда равен произведению трех его измерений:
где — измерения параллелепипеда.
Докажем сначала, что объемы двух прямоугольных параллелепипедов с равными основаниями относятся как длины их высот.
Пусть — два прямоугольных параллелепипеда с равными основаниями и объемами
соответственно. Совместим данные параллелепипеды. Для этого достаточно совместить их основания. Теперь рассмотрим объемы параллелепипедов
(рис. 238). Для определенности будем считать, что
. Разобьем ребро
на n равных отрезков. Пусть на отрезке
лежит m точек деления. Тогда:
проведем через точки деления параллельные основанию ABCD (рис. 239). Они разобьют параллелепипед на n равных параллелепипедов. Каждый из них имеет объем
. Очевидно, что параллелепиппед
содержит в себе объединение m параллелепипедов и сам содержится в объединении
параллелепипедов.
Таким образом, откуда
или
Сравнивая выражения (1) и (2), видим, что оба отношения находятся между
, то есть отличаются не больше чем на
Докажем методом от противного, что эти отношения равны.
Допустим, что это не так, то есть Тогда найдется такое натуральное число n, что
Отсюда
Из полученного противоречия следует, что
то есть объемы двух прямоугольных параллелепипедов с равными основаниями относятся как длины их высот.
Рассмотрим теперь прямоугольные параллелепипеды с измерениями объемы которых равны V,
соответственно (рис. 240).
По аксиоме объема V3 =1. По доказанному
Перемножив эти отношения, получим: V = abc.
* Выберем , например,
, где
— целая часть дроби
.
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Вычисление площадей плоских фигур
- Преобразование фигур в геометрии
- Многоугольник
- Площадь многоугольника
- Решение задач на вычисление площадей
- Тела вращения: цилиндр, конус, шар
- Четырехугольник
- Площади фигур в геометрии
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Нахождение площади фигуры, ограниченной линиями y=f(x), x=g(y)
В предыдущем разделе, посвященном разбору геометрического смысла определенного интеграла, мы получили ряд формул для вычисления площади криволинейной трапеции:
S ( G ) = ∫ a b f ( x ) d x для непрерывной и неотрицательной функции y = f ( x ) на отрезке [ a ; b ] ,
S ( G ) = — ∫ a b f ( x ) d x для непрерывной и неположительной функции y = f ( x ) на отрезке [ a ; b ] .
Эти формулы применимы для решения относительно простых задач. На деле же нам чаще придется работать с более сложными фигурами. В связи с этим, данный раздел мы посвятим разбору алгоритмов вычисления площади фигур, которые ограничены функциями в явном виде, т.е. как y = f ( x ) или x = g ( y ) .
Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)
Пусть функции y = f 1 ( x ) и y = f 2 ( x ) определены и непрерывны на отрезке [ a ; b ] , причем f 1 ( x ) ≤ f 2 ( x ) для любого значения x из [ a ; b ] . Тогда формула для вычисления площади фигуры G , ограниченной линиями x = a , x = b , y = f 1 ( x ) и y = f 2 ( x ) будет иметь вид S ( G ) = ∫ a b f 2 ( x ) — f 1 ( x ) d x .
Похожая формула будет применима для площади фигуры, ограниченной линиями y = c , y = d , x = g 1 ( y ) и x = g 2 ( y ) : S ( G ) = ∫ c d ( g 2 ( y ) — g 1 ( y ) d y .
Разберем три случая, для которых формула будет справедлива.
В первом случае, учитывая свойство аддитивности площади, сумма площадей исходной фигуры G и криволинейной трапеции G 1 равна площади фигуры G 2 . Это значит, что
Поэтому, S ( G ) = S ( G 2 ) — S ( G 1 ) = ∫ a b f 2 ( x ) d x — ∫ a b f 1 ( x ) d x = ∫ a b ( f 2 ( x ) — f 1 ( x ) ) d x .
Выполнить последний переход мы можем с использованием третьего свойства определенного интеграла.
Во втором случае справедливо равенство: S ( G ) = S ( G 2 ) + S ( G 1 ) = ∫ a b f 2 ( x ) d x + — ∫ a b f 1 ( x ) d x = ∫ a b ( f 2 ( x ) — f 1 ( x ) ) d x
Графическая иллюстрация будет иметь вид:
Если обе функции неположительные, получаем: S ( G ) = S ( G 2 ) — S ( G 1 ) = — ∫ a b f 2 ( x ) d x — — ∫ a b f 1 ( x ) d x = ∫ a b ( f 2 ( x ) — f 1 ( x ) ) d x . Графическая иллюстрация будет иметь вид:
Перейдем к рассмотрению общего случая, когда y = f 1 ( x ) и y = f 2 ( x ) пересекают ось O x .
Точки пересечения мы обозначим как x i , i = 1 , 2 , . . . , n — 1 . Эти точки разбивают отрезок [ a ; b ] на n частей x i — 1 ; x i , i = 1 , 2 , . . . , n , где α = x 0 x 1 x 2 . . . x n — 1 x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S ( G i ) = ∫ x i — 1 x i ( f 2 ( x ) — f 1 ( x ) ) d x , i = 1 , 2 , . . . , n
S ( G ) = ∑ i = 1 n S ( G i ) = ∑ i = 1 n ∫ x i x i f 2 ( x ) — f 1 ( x ) ) d x = = ∫ x 0 x n ( f 2 ( x ) — f ( x ) ) d x = ∫ a b f 2 ( x ) — f 1 ( x ) d x
Последний переход мы можем осуществить с использованием пятого свойства определенного интеграла.
Проиллюстрируем на графике общий случай.
Формулу S ( G ) = ∫ a b f 2 ( x ) — f 1 ( x ) d x можно считать доказанной.
А теперь перейдем к разбору примеров вычисления площади фигур, которые ограничены линиями y = f ( x ) и x = g ( y ) .
Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)
Рассмотрение любого из примеров мы будем начинать с построения графика. Изображение позволит нам представлять сложные фигуры как объединения более простых фигур. Если построение графиков и фигур на них вызывает у вас затруднения, можете изучить раздел об основных элементарных функциях, геометрическом преобразовании графиков функций, а также построению графиков во время исследования функции.
Необходимо определить площадь фигуры, которая ограничена параболой y = — x 2 + 6 x — 5 и прямыми линиями y = — 1 3 x — 1 2 , x = 1 , x = 4 .
Решение
Изобразим линии на графике в декартовой системе координат.
На отрезке [ 1 ; 4 ] график параболы y = — x 2 + 6 x — 5 расположен выше прямой y = — 1 3 x — 1 2 . В связи с этим, для получения ответа используем формулу, полученную ранее, а также способ вычисления определенного интеграла по формуле Ньютона-Лейбница:
S ( G ) = ∫ 1 4 — x 2 + 6 x — 5 — — 1 3 x — 1 2 d x = = ∫ 1 4 — x 2 + 19 3 x — 9 2 d x = — 1 3 x 3 + 19 6 x 2 — 9 2 x 1 4 = = — 1 3 · 4 3 + 19 6 · 4 2 — 9 2 · 4 — — 1 3 · 1 3 + 19 6 · 1 2 — 9 2 · 1 = = — 64 3 + 152 3 — 18 + 1 3 — 19 6 + 9 2 = 13
Ответ: S ( G ) = 13
Рассмотрим более сложный пример.
Необходимо вычислить площадь фигуры, которая ограничена линиями y = x + 2 , y = x , x = 7 .
Решение
В данном случае мы имеем только одну прямую линию, расположенную параллельно оси абсцисс. Это x = 7 . Это требует от нас найти второй предел интегрирования самостоятельно.
Построим график и нанесем на него линии, данные в условии задачи.
Имея график перед глазами, мы легко можем определить, что нижним пределом интегрирования будет абсцисса точки пересечения графика прямой y = x и полу параболы y = x + 2 . Для нахождения абсциссы используем равенства:
y = x + 2 О Д З : x ≥ — 2 x 2 = x + 2 2 x 2 — x — 2 = 0 D = ( — 1 ) 2 — 4 · 1 · ( — 2 ) = 9 x 1 = 1 + 9 2 = 2 ∈ О Д З x 2 = 1 — 9 2 = — 1 ∉ О Д З
Получается, что абсциссой точки пересечения является x = 2 .
Обращаем ваше внимание на тот факт, что в общем примере на чертеже линии y = x + 2 , y = x пересекаются в точке ( 2 ; 2 ) , поэтому такие подробные вычисления могут показаться излишними. Мы привели здесь такое подробное решение только потому, что в более сложных случаях решение может быть не таким очевидным. Это значит, что координаты пересечения линий лучше всегда вычислять аналитически.
На интервале [ 2 ; 7 ] график функции y = x расположен выше графика функции y = x + 2 . Применим формулу для вычисления площади:
S ( G ) = ∫ 2 7 ( x — x + 2 ) d x = x 2 2 — 2 3 · ( x + 2 ) 3 2 2 7 = = 7 2 2 — 2 3 · ( 7 + 2 ) 3 2 — 2 2 2 — 2 3 · 2 + 2 3 2 = = 49 2 — 18 — 2 + 16 3 = 59 6
Ответ: S ( G ) = 59 6
Необходимо вычислить площадь фигуры, которая ограничена графиками функций y = 1 x и y = — x 2 + 4 x — 2 .
Решение
Нанесем линии на график.
Определимся с пределами интегрирования. Для этого определим координаты точек пересечения линий, приравняв выражения 1 x и — x 2 + 4 x — 2 . При условии, что x не равно нулю, равенство 1 x = — x 2 + 4 x — 2 становится эквивалентным уравнению третьей степени — x 3 + 4 x 2 — 2 x — 1 = 0 с целыми коэффициентами. Освежить в памяти алгоритм по решению таких уравнений мы можете, обратившись к разделу «Решение кубических уравнений».
Корнем этого уравнения является х = 1 : — 1 3 + 4 · 1 2 — 2 · 1 — 1 = 0 .
Разделив выражение — x 3 + 4 x 2 — 2 x — 1 на двучлен x — 1 , получаем: — x 3 + 4 x 2 — 2 x — 1 ⇔ — ( x — 1 ) ( x 2 — 3 x — 1 ) = 0
Оставшиеся корни мы можем найти из уравнения x 2 — 3 x — 1 = 0 :
x 2 — 3 x — 1 = 0 D = ( — 3 ) 2 — 4 · 1 · ( — 1 ) = 13 x 1 = 3 + 13 2 ≈ 3 . 3 ; x 2 = 3 — 13 2 ≈ — 0 . 3
Мы нашли интервал x ∈ 1 ; 3 + 13 2 , на котором фигура G заключена выше синей и ниже красной линии. Это помогает нам определить площадь фигуры:
S ( G ) = ∫ 1 3 + 13 2 — x 2 + 4 x — 2 — 1 x d x = — x 3 3 + 2 x 2 — 2 x — ln x 1 3 + 13 2 = = — 3 + 13 2 3 3 + 2 · 3 + 13 2 2 — 2 · 3 + 13 2 — ln 3 + 13 2 — — — 1 3 3 + 2 · 1 2 — 2 · 1 — ln 1 = 7 + 13 3 — ln 3 + 13 2
Ответ: S ( G ) = 7 + 13 3 — ln 3 + 13 2
Необходимо вычислить площадь фигуры, которая ограничена кривыми y = x 3 , y = — log 2 x + 1 и осью абсцисс.
Решение
Нанесем все линии на график. Мы можем получить график функции y = — log 2 x + 1 из графика y = log 2 x , если расположим его симметрично относительно оси абсцисс и поднимем на одну единицу вверх. Уравнение оси абсцисс у = 0 .
Обозначим точки пересечения линий.
Как видно из рисунка, графики функций y = x 3 и y = 0 пересекаются в точке ( 0 ; 0 ) . Так получается потому, что х = 0 является единственным действительным корнем уравнения x 3 = 0 .
x = 2 является единственным корнем уравнения — log 2 x + 1 = 0 , поэтому графики функций y = — log 2 x + 1 и y = 0 пересекаются в точке ( 2 ; 0 ) .
x = 1 является единственным корнем уравнения x 3 = — log 2 x + 1 . В связи с этим графики функций y = x 3 и y = — log 2 x + 1 пересекаются в точке ( 1 ; 1 ) . Последнее утверждение может быть неочевидным, но уравнение x 3 = — log 2 x + 1 не может иметь более одного корня, так как функция y = x 3 является строго возрастающей, а функция y = — log 2 x + 1 строго убывающей.
Дальнейшее решение предполагает несколько вариантов.
Вариант №1
Фигуру G мы можем представить как сумму двух криволинейных трапеций, расположенных выше оси абсцисс, первая из которых располагается ниже средней линии на отрезке x ∈ 0 ; 1 , а вторая ниже красной линии на отрезке x ∈ 1 ; 2 . Это значит, что площадь будет равна S ( G ) = ∫ 0 1 x 3 d x + ∫ 1 2 ( — log 2 x + 1 ) d x .
Вариант №2
Фигуру G можно представить как разность двух фигур, первая из которых расположена выше оси абсцисс и ниже синей линии на отрезке x ∈ 0 ; 2 , а вторая между красной и синей линиями на отрезке x ∈ 1 ; 2 . Это позволяет нам найти площадь следующим образом:
S ( G ) = ∫ 0 2 x 3 d x — ∫ 1 2 x 3 — ( — log 2 x + 1 ) d x
В этом случае для нахождения площади придется использовать формулу вида S ( G ) = ∫ c d ( g 2 ( y ) — g 1 ( y ) ) d y . Фактически, линии, которые ограничивают фигуру, можно представить в виде функций от аргумента y .
Разрешим уравнения y = x 3 и — log 2 x + 1 относительно x :
y = x 3 ⇒ x = y 3 y = — log 2 x + 1 ⇒ log 2 x = 1 — y ⇒ x = 2 1 — y
Получим искомую площадь:
S ( G ) = ∫ 0 1 ( 2 1 — y — y 3 ) d y = — 2 1 — y ln 2 — y 4 4 0 1 = = — 2 1 — 1 ln 2 — 1 4 4 — — 2 1 — 0 ln 2 — 0 4 4 = — 1 ln 2 — 1 4 + 2 ln 2 = 1 ln 2 — 1 4
Ответ: S ( G ) = 1 ln 2 — 1 4
Необходимо вычислить площадь фигуры, которая ограничена линиями y = x , y = 2 3 x — 3 , y = — 1 2 x + 4 .
Решение
Красной линией нанесем на график линию, заданную функцией y = x . Синим цветом нанесем линию y = — 1 2 x + 4 , черным цветом обозначим линию y = 2 3 x — 3 .
Отметим точки пересечения.
Найдем точки пересечения графиков функций y = x и y = — 1 2 x + 4 :
x = — 1 2 x + 4 О Д З : x ≥ 0 x = — 1 2 x + 4 2 ⇒ x = 1 4 x 2 — 4 x + 16 ⇔ x 2 — 20 x + 64 = 0 D = ( — 20 ) 2 — 4 · 1 · 64 = 144 x 1 = 20 + 144 2 = 16 ; x 2 = 20 — 144 2 = 4 П р о в е р к а : x 1 = 16 = 4 , — 1 2 x 1 + 4 = — 1 2 · 16 + 4 = — 4 ⇒ x 1 = 16 н е я в л я е т с я р е ш е н и е м у р а в н е н и я x 2 = 4 = 2 , — 1 2 x 2 + 4 = — 1 2 · 4 + 4 = 2 ⇒ x 2 = 4 я в л я е т с я р е ш е н и е м у р а в н и н и я ⇒ ( 4 ; 2 ) т о ч к а п е р е с е ч е н и я y = x и y = — 1 2 x + 4
Найдем точку пересечения графиков функций y = x и y = 2 3 x — 3 :
x = 2 3 x — 3 О Д З : x ≥ 0 x = 2 3 x — 3 2 ⇔ x = 4 9 x 2 — 4 x + 9 ⇔ 4 x 2 — 45 x + 81 = 0 D = ( — 45 ) 2 — 4 · 4 · 81 = 729 x 1 = 45 + 729 8 = 9 , x 2 45 — 729 8 = 9 4 П р о в е р к а : x 1 = 9 = 3 , 2 3 x 1 — 3 = 2 3 · 9 — 3 = 3 ⇒ x 1 = 9 я в л я е т с я р е ш е н и е м у р а в н е н и я ⇒ ( 9 ; 3 ) т о ч к а п е р е с е ч а н и я y = x и y = 2 3 x — 3 x 2 = 9 4 = 3 2 , 2 3 x 1 — 3 = 2 3 · 9 4 — 3 = — 3 2 ⇒ x 2 = 9 4 н е я в л я е т с я р е ш е н и е м у р а в н е н и я
Найдем точку пересечения линий y = — 1 2 x + 4 и y = 2 3 x — 3 :
— 1 2 x + 4 = 2 3 x — 3 ⇔ — 3 x + 24 = 4 x — 18 ⇔ 7 x = 42 ⇔ x = 6 — 1 2 · 6 + 4 = 2 3 · 6 — 3 = 1 ⇒ ( 6 ; 1 ) т о ч к а п е р е с е ч е н и я y = — 1 2 x + 4 и y = 2 3 x — 3
Дальше мы можем продолжить вычисления двумя способами.
Способ №1
Представим площадь искомой фигуры как сумму площадей отдельных фигур.
Тогда площадь фигуры равна:
S ( G ) = ∫ 4 6 x — — 1 2 x + 4 d x + ∫ 6 9 x — 2 3 x — 3 d x = = 2 3 x 3 2 + x 2 4 — 4 x 4 6 + 2 3 x 3 2 — x 2 3 + 3 x 6 9 = = 2 3 · 6 3 2 + 6 2 4 — 4 · 6 — 2 3 · 4 3 2 + 4 2 4 — 4 · 4 + + 2 3 · 9 3 2 — 9 2 3 + 3 · 9 — 2 3 · 6 3 2 — 6 2 3 + 3 · 6 = = — 25 3 + 4 6 + — 4 6 + 12 = 11 3
Способ №2
Площадь исходной фигуры можно представить как сумму двух других фигур.
Тогда решим уравнение линии относительно x , а только после этого применим формулу вычисления площади фигуры.
y = x ⇒ x = y 2 к р а с н а я л и н и я y = 2 3 x — 3 ⇒ x = 3 2 y + 9 2 ч е р н а я л и н и я y = — 1 2 x + 4 ⇒ x = — 2 y + 8 с и н я я л и н и я
Таким образом, площадь равна:
S ( G ) = ∫ 1 2 3 2 y + 9 2 — — 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 — y 2 d y = = ∫ 1 2 7 2 y — 7 2 d y + ∫ 2 3 3 2 y + 9 2 — y 2 d y = = 7 4 y 2 — 7 4 y 1 2 + — y 3 3 + 3 y 2 4 + 9 2 y 2 3 = 7 4 · 2 2 — 7 4 · 2 — 7 4 · 1 2 — 7 4 · 1 + + — 3 3 3 + 3 · 3 2 4 + 9 2 · 3 — — 2 3 3 + 3 · 2 2 4 + 9 2 · 2 = = 7 4 + 23 12 = 11 3
Как видите, значения совпадают.
Ответ: S ( G ) = 11 3
Итоги
Для нахождения площади фигуры, которая ограничена заданными линиями нам необходимо построить линии на плоскости, найти точки их пересечения, применить формулу для нахождения площади. В данном разделе мы рассмотрели наиболее часто встречающиеся варианты задач.
Вычисление площадей фигур в различных системах координат
Площадь плоской фигуры в декартовых координатах
Напомним, что мы назвали криволинейной трапецией фигуру, ограниченную осью абсцисс, прямыми и и графиком функции . В этом пункте выведем формулу для вычисления площади криволинейной трапеции.
Теорема 3. Если функция неотрицательна на отрезке и непрерывна на нем, то соответствующая ей криволинейная трапеция квадрируема, причем ее площадь выражается формулой
Доказательство. Криволинейная трапеция ограничена тремя отрезками и графиком непрерывной функции . Как было показано в пункте 2 такая фигура квадрируема. Чтобы вычислить площадь этой трапеции, построим для нее внешние и внутренние ступенчатые фигуры (см. рис. 26).
Тогда, с одной стороны, имеем:
где — площадь внутренней ступенчатой фигуры, —площадь внешней ступенчатой фигуры, и . С другой стороны, по определению интеграла можно записать:
Таким образом, числа и разделяют одни и те же числовые множества: . Но, как было показано при изучении определенного интеграла, эти множества разделяются лишь одним числом, и потому . Теорема доказана.
Аналогично доказывается, что если фигура ограничена снизу графиком функции , сверху графиком функции , а слева и справа прямыми (рис. 30), то ее площадь выражается формулой
Наглядный смысл формулы (4) состоит в том, что криволинейную трапецию можно рассматривать как объединение «бесконечно тонких полосок» с основаниями и высотами .
Пусть теперь функция непрерывна на отрезке и принимает на нем только неположительные значения. Выразим с помощью определенного интеграла площадь соответствующей криволинейной трапеции .
Рассмотрим фигуру , симметричную фигуре относительно оси . Эта фигура (рис. 31) представляет собой криволинейную трапецию, ограниченную сверху графиком непрерывной на отрезке функции , которая на принимает только неотрицательные значения. По доказанному выше
Как мы видим, в рассматриваемом случае интеграл дает значение площади криволинейной трапеции с точностью до знака. Если же функция меняет знак на отрезке в конечном числе точек, то значение интеграла дает алгебраическую сумму площадей соответствующих криволинейных трапеций, ограниченных частями графика функции , отрезками оси и, быть может, отрезками, параллельными оси (рис. 32).
Пример 1. Найти площадь фигуры, ограниченной кривой , осью абсцисс и прямыми (рис. 33).
Решение. Имеем: (кв. ед.).
Пример 2. Вычислить площадь фигуры, ограниченной дугой параболы и отрезком прямой (рис. 34).
Решение. Из рисунка видно, что трапеция, площадь которой нужно найти, расположена симметрично относительно оси абсцисс и, следовательно, искомая площадь равна
Пример 3. Найти площадь фигуры, ограниченной графиками функций (рис. 35).
Решение. Искомая площадь равна разности площадей криволинейного треугольника и прямоугольного треугольника
Пример 4. Вычислить площадь фигуры, ограниченной петлей кривой .
Решение. Из уравнения кривой видно, что она расположена симметрично относительно оси . Следовательно, можно сначала вычислить половину искомой площади (рис. 36). Рекомендуем читателю подробно исследовать и построить данную кривую.
Записав уравнение кривой в виде , найдем точки пересечения ее с осью , положив . Учитывая сказанное, найдем площадь половины петли:
Воспользовавшись формулой из таблицы при , получим:
Значит, окончательно имеем:
Площадь фигуры, ограниченной кривой, заданной параметрически
Пусть кривая задана в параметрической форме
где функция монотонна на отрезке , причем , и имеет на этом отрезке непрерывную производную. Так как , то по формуле замены переменной под знаком определенного интеграла получаем:
Итак, площадь фигуры, ограниченной кривой, заданной параметрически, вычисляется по формуле:
Пример 5. Вычислить площадь эллипса, заданного параметрически
Решение. Выберем ту часть эллипса (рис. 37), которая расположена в первом квадранте. Точке соответствует значение , а точке — значение . Поэтому
Площадь фигуры, заданной в полярных координатах
Вычислить площадь сектора, ограниченного лучами и , выходящими из точки , и непрерывной кривой (рис. 38). Выберем полярную систему координат, полюсом которой является точка . Пусть — полярное уравнение кривой , а и — углы между полярной осью и лучами и соответственно. При этом пусть функция непрерывна на .
Разобьем данный сектор на частей лучами
и рассмотрим k-й частичный сектор (рис. 39). Пусть — наименьшее значение функции в , a — наибольшее значение функции в этом отрезке.
Построим два круговых сектора с радиусами и . Обозначим через величину угла рассматриваемого частичного сектора. Тогда площадь частичного криволинейного сектора будет заключена между площадями вписанного и описанного частичных круговых секторов
Построим аналогичным образом внутренние и внешние круговые секторы для всех частичных криволинейных секторов. Объединяя их, получим внутреннюю и внешнюю фигуры.
Площадь внутренней фигуры, состоящей из круговых секторов, равна , а площадь внешней фигуры равна — . Эти выражения являются нижней и верхней суммами Дарбу и для интеграла . Так как функция непрерывна, то непрерывна, а потому и интегрируема функция . Поэтому для любого найдется такое разбиение отрезка , что . Из теоремы 2 пункта 2 следует, что заданный криволинейный сектор квадрируем. При этом для его площади выполняются неравенства
В то же время по определению определенного интеграла
В силу единственности разделяющего числа из неравенств (6) и (7) следует, что
Пример 6. Вычислить площадь, ограниченную одним лепестком розы (рис. 40).
http://zaochnik.com/spravochnik/matematika/integraly-integrirovanie/nahozhdenie-ploschadi-figury-ogranichennoj-linijam/
http://mathhelpplanet.com/static.php?p=ploshchadi-figur-v-razlichnykh-sistemakh-koordinat
Вычисление площадей плоских фигур:
Определение 1. Пусть Ф – фигура на плоскости. Рассмотрим множество
Пусть — площади фигур
и
. Фигура Ф называется квадрируемой, если
При этом число
(1) называется площадью фигуры Φ (по Жордану).
Замечание. Для квадрируемости фигуры Ф необходимо и достаточно,
чтобы
В частности, для криволинейной трапеции (см. § 24) в качестве
и
можно рассматривать нижние и верхние суммы Дарбу (см. рис. 3, 4, 5 из § 24). И тогда, с учетом § 24, из (1) следует, что
(2)
Пусть — непрерывны на
Тогда из (2) следует, что для фигуры
(3)
Пример 1.
Найти площадь фигуры Ф, ограниченной линиями
Решение.
Точки пересечения линий − найдем, решив систему:
Сверху фигура ограничена прямой y=3-x, снизу – параболой . Поэтому
по формуле (3):
Пример 2.
Найти площадь фигуры Ф, ограниченной линиями
Решение.
Рис.6. Фигура Ф.
Снизу фигура ограничена параболой , сверху – кривой
заданной двумя аналитическими выражениями.
Поэтому разобьем отрезок интегрирования [0, 3] на два: [0,1] и [1, 3] , и
Пример 3.
Найти площадь фигуры Ф, ограниченной линиями
Решение.
Точки пресечения линий − найдем, решив систему:
За независимую переменную в данном случае удобно считать у , а х – функцией от у.
Справа фигура ограничена прямой x=3- y, слева – параболой . По формуле (3):
(см. пример 1).
Замечание. Необходимо помнить, что когда функция y=f(x) не является знакопостоянной, равен алгебраической сумме площадей криволинейных трапеций, расположенных выше оси Ох (со знаком «+») и ниже оси Ох (со знаком «-»).
Пример 4.
Рассмотрим кривую на плоскости, заданную параметрически в виде
— непрерывны при
Предположим вначале, что кривая не имеет точек самопересечения ( простая кривая ) или образует петлю (если — простая замкнутая кривая ).
Пример 5.
а) График любой непрерывной функции − простая кривая:
(в качестве параметра берем х).
б) График любой непрерывной функции − простая кривая:
(в качестве параметра берем у).
в) Эллипс − простая замкнутая кривая:
(см. пример 8 § 17).
г) Кривая (см. пример 10 §17) не является простой (имеет точки самопересечения при
Рассмотрим криволинейную трапецию
Площадь трапеции − непрерывно-
дифференцируема на промежутке Тогда по формуле (1) § 26:
(4) где
Таким образом (5) (кривую удобно обходить так, чтобы область Ф оставалась слева).
Аналогично, для криволинейной трапеции
непрерывно-дифференцируемая на промежутке
функция, то
где
При движении от А к В область остается слева.
Рассмотрим простую замкнутую кривую
Площадь Ф, которую она ограничивает можно находить как по формуле (5), так и по формуле (6):
а также по формуле:
(7) и при изменении параметра t от
полный обход контура проходит против часовой стрелки (область остается слева).
Пример 6.
Найдем площадь криволинейной трапеции, ограниченной графиком функции и прямыми х = 0 и х = 3.
(см. пример 1 § 26).
С другой стороны кривая задается параметрически в виде:
Поэтому, по формуле (5)
Пример 7.
Найдем площадь ограниченную эллипсом
— параметрическое уравнение эллипса.
Решение.
Найдем площадь по формуле (7)
Пример 8.
Найти площадь петли кривой:
Решение:
При изменении t от -1 до 1 обход контура проходит против часовой стрелки.
По формуле (6):
Рассмотрим замкнутую кривую, имеющую точки самопересечения. В этом случае, проинтегрировав по всему контуру в формулах (5) – (7), мы получим алгебраическую сумму площадей фигур, ограниченных каждой пройденной петлей взятых со знаком «+», если петля проходится против часовой стрелки, и со знаком «-», если петля проходится по часовой стрелке.
Пример 9.
Рассмотрим кривую
При изменении ϕ от 0 до 2π каждый лепесток кривой проходится против часовой стрелки, поэтому
— площадь
ограниченная четырьмя лепестками.
Площадь одного лепестка:
Вычисления проводим в пакете
Mathematica:
Ячейка Input:
Ячейка Output:
Иногда удобнее найти площадь одного лепестка и результат умножить на
количество лепестков.
Пример 10.
Рассмотрим кривую
При изменении ϕ от 0 до 2π каждый лепесток проходится дважды (и оба раза против часовой стрелки); Площадь одного лепестка :
площадь всей фигуры равна
Пример 11.
Рассмотрим кривую
Фигура, ограниченная малой петлей обходится дважды (и оба раза против часовой стрелки). Площадь, ограниченная внешним контуром:
Площадь ограниченная внутренним контуром:
Пример 12.
Рассмотрим кривую
Один лепесток проходится по часовой стрелке, второй – против:
Площадь одного лепестка:
- Преобразование фигур в геометрии
- Многоугольник
- Площадь многоугольника
- Правильные многоугольники
- Тела вращения: цилиндр, конус, шар
- Четырехугольник
- Площади фигур в геометрии
- Площади поверхностей геометрических тел
Площадь поверхности
разделов
от теории до практики
примеров
Примеры решения задач
видео
Примеры решения задач
-
Первая квадратичная форма поверхности.
Начать изучение
-
Площадь простой поверхности.
Начать изучение
-
Площадь почти простой поверхности.
Начать изучение
Первая квадратичная форма поверхности.
Пусть простая поверхность задана векторным уравнением
$$
boldsymbol{r} = boldsymbol{r}(u, v), (u, v) in overline{Omega},label{ref1}
$$
где (Omega) плоская область.
Найдем скалярный квадрат вектора
$$
dboldsymbol{r} = boldsymbol{r}_{u}(u, v) du + boldsymbol{r}_{v}(u, v) dv.nonumber
$$
Полагая
$$
E = (boldsymbol{r}_{u}, boldsymbol{r}_{u}),quad F = (boldsymbol{r}_{u}, boldsymbol{r}_{v}),quad G = (boldsymbol{r}_{v}, boldsymbol{r}_{v}),label{ref2}
$$
получаем, что справедлива формула
$$
|dboldsymbol{r}|^{2} = (dboldsymbol{r}, dboldsymbol{r}) = E(u, v) du^{2} + 2F(u, v) du dv + G(u, v) dv^{2}.label{ref3}
$$
Выражение, стоящее в правой части равенства eqref{ref3}, называется первой квадратичной формой поверхности, числа (E), (F) и (G) называются коэффициентами первой квадратичной формы поверхности.
Лемма 1.
Первая квадратичная форма простой поверхности положительно определена, то есть (|dboldsymbol{r}|^{2} > 0), если ((du)^{2} + (dv)^{2} > 0).
Доказательство.
(circ) Так как
$$
(boldsymbol{a}, boldsymbol{b}) = |boldsymbol{a}| cdot |boldsymbol{b}| cos widehat{boldsymbol{ab}},quad |[boldsymbol{a}, boldsymbol{b}]| = |boldsymbol{a}| cdot |boldsymbol{b}| cdot |sin widehat{boldsymbol{ab}}|,nonumber
$$
то справедливо тождество
$$
|[boldsymbol{a}, boldsymbol{b}]|^{2} = |boldsymbol{a}|^{2} cdot |boldsymbol{b}|^{2}-|(boldsymbol{a}, boldsymbol{b})|^{2},nonumber
$$
Подставляя в это тождество (boldsymbol{a} = boldsymbol{r}_{u}), (boldsymbol{b} = boldsymbol{r}_{v}), и пользуясь тем, что в любой точке простой поверхности векторы (boldsymbol{r}_{u}) и (boldsymbol{r}_{v}) неколлинеарны, получаем
$$
|[boldsymbol{r}_{u}, boldsymbol{r}_{v}]|^{2} = EG-F^{2} > 0.nonumber
$$
Условия (E > 0), (G > 0), (EG-F^{2} > 0) достаточны для положительной определенности первой квадратичной формы поверхности. (bullet)
Говорят, что первая квадратичная форма задает на поверхности метрику. Зная коэффициенты первой квадратичной формы поверхности, можно вычислить длины кривых, лежащих на поверхности, определить площадь поверхности. Например, дифференциалы длин дуг координатных кривых, проходящих через точку (A(u, v)) поверхности, равны следующим величинам:
$$
ds_{1} = |boldsymbol{r}_{u}du| = sqrt{E}|du|,quad ds_{2} = |boldsymbol{r}_{v}dv| = sqrt{G}|dv|.label{ref4}
$$
Площадь простой поверхности.
Пусть простая поверхность задана уравнением eqref{ref1}. Рассмотрим на поверхности криволинейный параллелограмм, ограниченный координатными линиями (u), (u + Delta u), (v), (v + Delta v). Векторы (boldsymbol{r}_{u}(u, v)Delta u) и (boldsymbol{r}_{v}(u, v)Delta v) будут касательными к координатным линиям, проходящим через точку (A(u, v)) поверхности (рис. 53.1), а длины этих векторов в силу формул eqref{ref4} будут отличаться от длин сторон криволинейного параллелограмма на (o(Delta u)) и (o(Delta v)) соответственно при (Delta u rightarrow 0), (Delta v rightarrow 0). Поэтому естественно считать, что площадь криволинейного параллелограмма приближенно равна площади (dS) параллелограмма, построенного на векторах (boldsymbol{r}_{u} Delta u) и (boldsymbol{r}_{v} Delta v). Таким образом, при (Delta u > 0), (Delta v > 0).
$$
dS = |[boldsymbol{r}_{u}, boldsymbol{r}_{v}] Delta u Delta v| = sqrt{EG-F^{2}} du dv.label{ref5}
$$
Выражение eqref{ref5} называется элементом площади поверхности.
Определим формально площадь простой поверхности (Sigma) как следующий двойной интеграл (область (Omega) предполагается измеримой по Жордану):
$$
S(Sigma) = iintlimits_{Omega} |[boldsymbol{r}_{u}, boldsymbol{r}_{v}]| du dv = iintlimits_{Omega} sqrt{EG-F^{2}} du dv.label{ref6}
$$
Это определение оправдано приведенными выше эвристическими рассуждениями, а также перечисленными ниже свойствами площади поверхности.
Свойство 1.
Число (S(Sigma)) не зависит от способа параметризации поверхности.
Доказательство.
(circ) Пусть переход от параметрического уравнения eqref{ref1} к параметрическому уравнению
$$
boldsymbol{rho} = boldsymbol{rho}(u’, v’), (u’, v’) in Omega’,nonumber
$$
совершается при помощи взаимно однозначного и непрерывно дифференцируемого отображения области (Omega’) на область (Omega) с якобианом, не равным нулю. Тогда, воспользовавшись формулой отсюда и формулой замены переменных в двойном интеграле, получаем
$$
S(Sigma) = iintlimits_{Omega’} |[boldsymbol{rho}_{u’}, boldsymbol{rho}_{v’}]| du’ dv’ = iintlimits_{Omega’} |[boldsymbol{r}_{u}, boldsymbol{r}_{v}]| cdot left|frac{partial(u, v)}{partial(u’, v’)}right| du’ dv’ = iintlimits_{Omega} |[boldsymbol{r}_{u}, boldsymbol{r}_{v}]| du dv. bulletnonumber
$$
Свойство 2.
Если поверхность (Sigma) есть плоская измеримая по Жордану область (Omega), заданная уравнениями
$$
x = u, y = v, z = 0, (u, v) in Omega,nonumber
$$
то ее площадь, вычисленная при помощи формулы eqref{ref6}, совпадает с плоской мерой Жордана области (Omega).
Доказательство.
(circ) Так как
$$
boldsymbol{r} = (u, v, 0), boldsymbol{r}_{u} = (1, 0, 0), boldsymbol{r}_{v} = (0, 1, 0), E = G = 1,nonumber F = 0,
$$
то
$$
S(Sigma) = iintlimits_{Omega} |[boldsymbol{r}_{u}, boldsymbol{r}_{v}]| du dv = iintlimits_{Omega} du dv = m(Omega). bulletnonumber
$$
Свойство 3.
Выражение (S(Sigma)) аддитивно зависит от поверхности.
Доказательство.
(circ) Если область (Omega) гладкой перегородкой разбита на области (Omega_{1}) и (Omega_{2}), то и поверхность (Sigma) разобьется на простые поверхности (Sigma_{1}) и (Sigma_{2}). Из аддитивности двойного интеграла по области интегрирования следует, что
$$
S(Sigma) = S(Sigma_{1}) + S(Sigma_{2}). bulletnonumber
$$
Свойство 4.
Для поверхности, являющейся графиком непрерывно дифференцируемой функции на замыкании измеримой по Жордану области (Omega), формула eqref{ref6} для площади поверхности имеет следующий вид:
$$
S(Sigma) = iintlimits_{Omega} sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy.label{ref7}
$$
Доказательство.
(circ) Действительно, так как
$$
boldsymbol{r} = (x, y, f(x, y)), boldsymbol{r}_{x} = (1, 0, f_{x}(x, y)), boldsymbol{r}_{y} = (0, 1, f_{y}(x, y)),nonumber
$$
то
$$
E = boldsymbol{r}_{x}^{2} = 1 + f_{x}^{2}, F = (boldsymbol{r}_{x}, boldsymbol{r}_{y}) = f_{x}f_{y}, G = boldsymbol{r}_{y}^{2} = 1 + f_{y}^{2},nonumber
$$
$$
EG-F^{2} = (1 + f_{x}^{2})(1 + f_{y}^{2})-f_{x}^{2}f_{y}^{2} = 1 + f_{x}^{2} + f_{y}^{2}. bulletnonumber
$$
Пример 1.
Найти площадь части сферы (x^{2} + y^{2} + z^{2} = a^{2}), вырезаемой из нее цилиндром (x^{2}-ax + y^{2} = 0) (см. рис. 48.10).
Решение.
(triangle) В силу симметрии достаточно ограничиться рассмотрением той части сферы, которая лежит в первом октанте. Цилиндр будет вырезать из нее множество точек, определяемое следующими неравенствами и равенствами:
$$
x^{2} + y^{2} + z^{2} = a^{2}, x^{2}-ax + y^{2} leq 0, x geq 0, y geq 0, z geq 0.label{ref8}
$$
Если перейти к сферическим координатам, полагая
$$
x = a cos psi cos varphi, y = a cos psi sin varphi, z =a sin psi,label{ref9}
$$
то система равенств и неравенств eqref{ref8} эквивалентна равенствам eqref{ref9} и неравенствам
$$
0 leq varphi leq psi leq frac{pi}{2},label{ref10}
$$
определяющим в плоскости параметров (varphi, psi) треугольную область (Omega) (рис. 53.2). Интересующая нас простая поверхность есть образ треугольной области (Omega) при отображении eqref{ref9}.
Вычислим коэффициенты первой квадратичной формы. Получаем
$$
boldsymbol{r} = (a cos psi cos varphi, a cos psi sin varphi, a sin psi),nonumber
$$
$$
boldsymbol{r}_{psi} = (-a sin psi cos varphi, -a sin psi sin varphi, a cos psi),nonumber
$$
$$
boldsymbol{r}_{varphi} = (-a cos psi sin varphi, a cos psi cos varphi, 0),nonumber
$$
$$
E = boldsymbol{r}_{psi}^{2} = a^{2}, F = (boldsymbol{r}_{varphi}, boldsymbol{r}_{psi}) = 0, G = boldsymbol{r}_{varphi}^{2} = a^{2} cos^{2} psi.nonumber
$$
Площадь части сферы (x^{2} + y^{2} + z^{2} = a^{2}), вырезаемой из нее цилиндром (x^{2}-ax + y^{2} = 0), равна
$$
S(Sigma) = 4 iintlimits_{Omega} sqrt{EG-F^{2}} dvarphi dpsi = 4 intlimits_{0}^{pi/2} dvarphi intlimits_{varphi}^{pi/2} a^{2} cos psi dpsi = 4a^{2} left(frac{pi}{2}-1right). blacktrianglenonumber
$$
Площадь почти простой поверхности.
Почти простая поверхность задается уравнением (boldsymbol{r} = boldsymbol{r}(u, v)), ((u, v) in overline{Omega}), где (Omega) — плоская область. По определению найдется последовательность ограниченных областей ({Omega_{n}}) такая, что (overline{Omega}_{n} subset Omega_{n + 1}), (displaystyleOmega = bigcup_{n=1}^{infty}Omega_{n}) а поверхности (Sigma_{n}), определяемые уравнениями (boldsymbol{r} = boldsymbol{r}(u, v)), ((u, v) in overline{Omega}), являются простыми. Предположим дополнительно, что области (Omega_{n}) измеримы по Жордану. Тогда под площадью (S(Sigma)) почти простой поверхности будем понимать (displaystylelim_{n rightarrow infty} S(Sigma_{n})).
Так как числовая последовательность (S(Sigma_{n})) монотонно возрастает, то она всегда имеет конечный или бесконечный предел
$$
S(Sigma) = lim_{n rightarrow infty} S(Sigma_{n}) = lim_{n rightarrow infty} iintlimits_{Omega_{n}} sqrt{EG-F^{2}} du dv = iintlimits_{Omega} sqrt{EG-F^{2}} du dv.label{ref11}
$$
Интеграл в формуле eqref{ref11} нужно понимать как несобственный. Если область (Omega) измерима по Жордану, а функция (sqrt{EG-F^{2}}) ограничена на (Omega), то интеграл в формуле eqref{ref11} будет двойным интегралом Римана.
Пример 2.
Найти площадь части боковой поверхности конуса (z^{2} = x^{2} + y^{2}), (z geq 0), вырезаемой из нее цилиндром (x^{2}-ax + y^{2} = 0).
Решение.
(triangle) Обозначим часть боковой поверхности конуса, вырезаемую из нее цилиндром, через (Sigma). Если перейти к цилиндрическим координатам, то (Sigma) будет почти простой поверхностью, определяемой параметрическими уравнениями
$$
x = r cos varphi, y = r sin varphi, z = r, (r, varphi) in Omega,nonumber
$$
$$
Omega = left{(r, varphi): r leq a cos varphi, -frac{pi}{2} leq varphi leq frac{pi}{2}right}.nonumber
$$
Найдем коэффициенты первой квадратичной формы этой поверхности:
$$
boldsymbol{r} = (r cos varphi, r sin varphi, r), boldsymbol{r}_{varphi} = (-r sin varphi, r cos varphi, 0),nonumber
$$
$$
boldsymbol{r}_{r} = (cos varphi, sin varphi, 1), E = boldsymbol{r}_{varphi}^{2} = r^{2}, F = 0, G = boldsymbol{r}_{r}^{2} = 2,nonumber
$$
$$
sqrt{EG-F^{2}} dr dvarphi = rsqrt{2} dr dvarphi.nonumber
$$
Применяя формулу eqref{ref11}, получаем
$$
S(Sigma) = iintlimits_{Omega} sqrt{2}r dr dvarphi = sqrt{2} intlimits_{-pi/2}^{pi/2} dvarphi intlimits_{0}^{a cos varphi} r dr = frac{pi a^{2} sqrt{2}}{4}. blacktrianglenonumber
$$
Если поверхность (Sigma) не является простой или почти простой, но может быть разрезана на конечное число простых кусков, то ее площадью называют сумму площадей всех простых кусков.