Погрешности измерительных приборов
Погрешность
измерительных приборов вносит, как уже
было сказано, систематическую ошибку,
которую нельзя устранить с помощью
поправок. Эта погрешность измеряемой
величины уже заложена при изготовлении
прибора и поэтому может быть оценена
до начала измерений.
Так,
погрешность измерительных линеек,
штангельциркулей, микрометров и некоторых
других измерительных инструментов
иногда наносят на самом приборе или
указывают в прилагаемом к ним паспорте.
Например, предельная погрешность
металлических линеек при измерении
длины до 500 мм равна 0,1 мм, до 1000 мм – 0,2
мм; у деревянных линеек длиной до 300 мм
предельная погрешность равна 0,1 мм, до
1000 мм – 0,5 мм. Для пластмассовых линеек
допускается погрешность 1 мм.
У
штангенциркулей погрешность 0,1 мм (с
нониусом в 10 делений) и 0,05 мм (с нониусом
в 20 делений). Предельная погрешность
микрометров с ценой деления 0,01 мм
равна 4 мкм.
Гири
массой 10 – 100 мг имеют погрешность в 1
мг, а погрешность для гирь в 200, 500, 1000,
2000 мг составляет, соответственно, 2, 4,
6, 8 мг.
У
механических секундомеров погрешность
составляет 1,5 цены деления за один оборот
секундной стрелки, у электрических –
0,5 цены деления за один оборот.
Жидкостные
термометры измеряют температуру с
точностью до цены деления шкалы (и если
цена деления менее одного градуса – то
с точностью до двух делений).
На
хороших измерительных приборах цена
деления шкалы согласована с классом
точности прибора и нецелесообразно
пытаться на глаз оценивать доли деления,
если они не отмечены на шкале.
Если
же погрешность измерительного прибора
не известна, то её можно оценочно принять
равной половине цены деления шкалы.
Когда
линейка имеет нониус (т.е. вспомогательную
шкалу линейки с числом n
делений, которая может передвигаться
вдоль делений шкалы основной линейки),
то это позволяет увеличить точность
измерения в n
раз. Например,
чтобы получить
результат измерения с помощью
штангенциркуля (рис. 1)
необходимо на шкале основной линейки
(1) найти деление, после которого
располагается первое деление
вспомогательной шкалы-нониуса
передвигающейся линейки (2).
После
этого нужно определить, какое деление
нониуса лучше всего совпадает с каким-либо
делением шкалы основной линейки.
Результат измерения с помощью
штангельциркуля состоит из целого числа
делений (миллиметров), считываемого по
шкале основной линейки, и долей деления
(миллиметра), считываемых с нониуса.
Итак: измеряемая длина равна целому
числу делений основной шкалы линейки,
расположенных до первого деления
нониуса, плюс цена деления нониуса,
умноженная на номер деления нониуса,
который лучше всего совпадает с каким-либо
делением шкалы основной линейки.
Результат измерения с помощью
штангенциркуля, показанного на рисунке
1: x
= 14 + 0,3 = 14,3
мм.
У
микрометра (рис.2) основная шкала нанесена
на тубусе (1), причём деления шкалы снизу
риски тубуса указывают миллиметры, а
сверху – полуцелое значение миллиметров.
Вращая
барабан (2) микрометра до упора (зажима
в зазоре микрометра измеряемого объекта),
замечается, какое деление шкалы барабана
совпадает с риской тубуса. Это деление
указывает сотые доли миллиметра, которые
следует прибавить к делениям шкалы
тубуса, видным из-под левого края
барабана: причём если последнее открытое
деление шкалы тубуса находится внизу
– то прибавление идёт к целому числу
миллиметров, если вверху, – то к
полуцелому. Например, в случае, указанном
на рисунке 2, результат измеренияx
= 1,5 + 0,22 = 1,72 мм.
На
измерительных приборах, имеющих шкалы
измерения (стрелочные, зайчиковые и
т.д.) обычно указывается класс точности
прибора .
Например, электроизмерительные приборы
характеризуются классом точности
от 0,05 до 4,0. Если внизу шкалы прибора
указано, предположим, число 0,5 (
= 0,5), то это означает, что показания
прибора правильны с точностью до 0,5 % от
всей действующей шкалы прибора. При
этом абсолютная приборная ошибка
измерения xпр
будет одинакова по всей шкале прибора:
xпр
= xmax
/100
= xmax
0,5 /100,
(4)
где
xmax
– предельное значение шкалы прибора,
если нулевая отметка находится на краю
шкалы, или xmax
равно сумме
конечных значений шкалы прибора по обе
стороны от нуля, если нулевая отметка
находится где-то в середине шкалы
прибора. (Иногда число, определяющее
класс точности прибора, обведено
кружочком – тогда это число определяет
приборную относительную ошибку пр,
выраженную в процентах).
На
рисунке 3 приведена шкала милливольтметра
с классом точности 2,0, измеряющего
напряжение от 0 до 50 мВ. Приборная
абсолютная ошибка измерений, полученных
с помощью такого миллиамперметра:
V
= 50
2,0/100 = 1,0 мВ.
Е
Рис.3
сли стрелка прибора перемещается
не плавно, а “скачками” (например, как
у ручного секундомера), то приборная
погрешность принимается равной величине
“скачка” (цене деления шкалы прибора).
Цифровые
приборы имеют погрешность, составляющую,
как правило, величину единицы последнего
разряда, отображаемого на цифровом
табло.
Так
как обычно приборная абсолютная ошибка
одинакова по всей шкале прибора,
рекомендуется для снижения относительной
ошибки проводить измерения на том
приборе (или для многопредельных приборов
– на том пределе измерения), максимальное
значение шкалы которого не на много
превышает значение измеряемой величины
(конечно, эта рекомендация относится к
приборам и шкалам одного класса
точности).
Электроизмерительные
приборы различаются по роду измеряемого
тока:
а)
постоянного тока (принятое обозначение
);
б)
постоянного и переменного тока
(обозначение
);
в)
однофазного переменного тока (обозначение
);
г)
трёхфазного переменного тока (обозначение
).
Принято
обозначать электрические приборы (на
шкалах приборов и в электрических
схемах): амперметры – А, вольтметры –
V,
гальванометры – G,
миллиамперметры, милливольтметры –
mA,
mV,
микроамперметры, микровольтметры –
A,
V.
Обычно
у прибора имеется несколько пределов
измерения (предельных значений шкалы).
Для перехода от одного к другому пределу
предусмотрены рычажные или штепсельные
переключатели, или же имеется несколько
зажимов, около которых в этом случае
проставлено предельное значение шкалы
прибора. Зажим, отмеченный звёздочкой
(*) или знаком минус (-), является общим
(с отрицательным потенциалом при
измерениях постоянного тока).
Соседние файлы в папке физика_1
- #
28.03.2016210.94 Кб2380.doc
- #
28.03.2016169.47 Кб2182.doc
- #
28.03.2016592.38 Кб2688.doc
- #
28.03.2016163.33 Кб239.doc
- #
- #
- #
- #
Погрешности измерений, представление результатов эксперимента
- Шкала измерительного прибора
- Цена деления
- Виды измерений
- Погрешность измерений, абсолютная и относительная погрешность
- Абсолютная погрешность серии измерений
- Представление результатов эксперимента
- Задачи
п.1. Шкала измерительного прибора
Шкала – это показывающая часть измерительного прибора, состоящая из упорядоченного ряда отметок со связанной с ними нумерацией. Шкала может располагаться по окружности, дуге или прямой линии.
Примеры шкал различных приборов:
п.2. Цена деления
Цена деления измерительного прибора равна числу единиц измеряемой величины между двумя ближайшими делениями шкалы. Как правило, цена деления указана на маркировке прибора.
Алгоритм определения цены деления
Шаг 1. Найти два ближайшие пронумерованные крупные деления шкалы. Пусть первое значение равно a, второе равно b, b > a.
Шаг 2. Посчитать количество мелких делений шкалы между ними. Пусть это количество равно n.
Шаг 3. Разделить разницу значений крупных делений шкалы на количество отрезков, которые образуются мелкими делениями: $$ triangle=frac{b-a}{n+1} $$ Найденное значение (triangle) и есть цена деления данного прибора.
Пример определения цены деления:
Определим цену деления основной шкалы секундомера. Два ближайших пронумерованных деления на основной шкале:a = 5 c b = 10 cМежду ними находится 4 средних деления, а между каждыми средними делениями еще 4 мелких. Итого: 4+4·5=24 деления. Цена деления: begin{gather*} triangle=frac{b-a}{n+1}\ triangle=frac{10-5}{24+1}=frac15=0,2 c end{gather*} |
п.3. Виды измерений
Вид измерений
Определение
Пример
Прямое измерение
Физическую величину измеряют с помощью прибора
Измерение длины бруска линейкой
Косвенное измерение
Физическую величину рассчитывают по формуле, куда подставляют значения величин, полученных с помощью прямых измерений
Определение площади столешницы при измеренной длине и ширине
п.4. Погрешность измерений, абсолютная и относительная погрешность
Погрешность измерений – это отклонение измеренного значения величины от её истинного значения.
Составляющие погрешности измерений
Причины
Инструментальная погрешность
Определяется погрешностью инструментов и приборов, используемых для измерений (принципом действия, точностью шкалы и т.п.)
Погрешность метода
Определяется несовершенством методов и допущениями в методике.
Погрешность теории (модели)
Определяется теоретическими упрощениями, степенью соответствия теоретической модели и реальности.
Погрешность оператора
Определяется субъективным фактором, ошибками экспериментатора.
Инструментальная погрешность измерений принимается равной половине цены деления прибора: $$ d=frac{triangle}{2} $$
Если величина (a_0) — это истинное значение, а (triangle a) — погрешность измерения, результат измерений физической величины записывают в виде (a=a_0pmtriangle a).
Абсолютная погрешность измерения – это модуль разности между измеренным и истинным значением измеряемой величины: $$ triangle a=|a-a_0| $$
Отношение абсолютной погрешности измерения к истинному значению, выраженное в процентах, называют относительной погрешностью измерения: $$ delta=frac{triangle a}{a_0}cdot 100text{%} $$
Относительная погрешность является мерой точности измерения: чем меньше относительная погрешность, тем измерение точнее. По абсолютной погрешности о точности измерения судить нельзя.
На практике абсолютную и относительную погрешности округляют до двух значащих цифр с избытком, т.е. всегда в сторону увеличения.
Значащие цифры – это все верные цифры числа, кроме нулей слева. Результаты измерений записывают только значащими цифрами.
Примеры значащих цифр:
0,403 – три значащих цифры, величина определена с точностью до тысячных.
40,3 – три значащих цифры, величина определена с точностью до десятых.
40,300 – пять значащих цифр, величина определена с точностью до тысячных.
В простейших измерениях инструментальная погрешность прибора является основной.
В таких случаях физическую величину измеряют один раз, полученное значение берут в качестве истинного, а абсолютную погрешность считают равной инструментальной погрешности прибора.
Примеры измерений с абсолютной погрешностью равной инструментальной:
- определение длины с помощью линейки или мерной ленты;
- определение объема с помощью мензурки.
Пример получения результатов прямых измерений с помощью линейки:
Измерим длину бруска линейкой, у которой пронумерованы сантиметры и есть только одно деление между пронумерованными делениями. Цена деления такой линейки: begin{gather*} triangle=frac{b-a}{n+1}= frac{1 text{см}}{1+1}=0,5 text{см} end{gather*} Инструментальная погрешность: begin{gather*} d=frac{triangle}{2}=frac{0,5}{2}=0,25 text{см} end{gather*} Истинное значение: (L_0=4 text{см}) Результат измерений: $$ L=L_0pm d=(4,00pm 0,25) text{см} $$ Относительная погрешность: $$ delta=frac{0,25}{4,00}cdot 100text{%}=6,25text{%}approx 6,3text{%} $$ |
|
Теперь возьмем линейку с n=9 мелкими делениями между пронумерованными делениями. Цена деления такой линейки: begin{gather*} triangle=frac{b-a}{n+1}= frac{1 text{см}}{9+1}=0,1 text{см} end{gather*} Инструментальная погрешность: begin{gather*} d=frac{triangle}{2}=frac{0,1}{2}=0,05 text{см} end{gather*} Истинное значение: (L_0=4,15 text{см}) Результат измерений: $$ L=L_0pm d=(4,15pm 0,05) text{см} $$ Относительная погрешность: $$ delta=frac{0,05}{4,15}cdot 100text{%}approx 1,2text{%} $$ |
Второе измерение точнее, т.к. его относительная погрешность меньше.
п.5. Абсолютная погрешность серии измерений
Измерение длины с помощью линейки (или объема с помощью мензурки) являются теми редкими случаями, когда для определения истинного значения достаточно одного измерения, а абсолютная погрешность сразу берется равной инструментальной погрешности, т.е. половине цены деления линейки (или мензурки).
Гораздо чаще погрешность метода или погрешность оператора оказываются заметно больше инструментальной погрешности. В таких случаях значение измеренной физической величины каждый раз немного меняется, и для оценки истинного значения и абсолютной погрешности нужна серия измерений и вычисление средних значений.
Алгоритм определения истинного значения и абсолютной погрешности в серии измерений
Шаг 1. Проводим серию из (N) измерений, в каждом из которых получаем значение величины (x_1,x_2,…,x_N)
Шаг 2. Истинное значение величины принимаем равным среднему арифметическому всех измерений: $$ x_0=x_{cp}=frac{x_1+x_2+…+x_N}{N} $$ Шаг 3. Находим абсолютные отклонения от истинного значения для каждого измерения: $$ triangle_1=|x_0-x_1|, triangle_2=|x_0-x_2|, …, triangle_N=|x_0-x_N| $$ Шаг 4. Находим среднее арифметическое всех абсолютных отклонений: $$ triangle_{cp}=frac{triangle_1+triangle_2+…+triangle_N}{N} $$ Шаг 5. Сравниваем полученную величину (triangle_{cp}) c инструментальной погрешностью прибора d (половина цены деления). Большую из этих двух величин принимаем за абсолютную погрешность: $$ triangle x=maxleft{triangle_{cp}; dright} $$ Шаг 6. Записываем результат серии измерений: (x=x_0pmtriangle x).
Пример расчета истинного значения и погрешности для серии прямых измерений:
Пусть при измерении массы шарика с помощью рычажных весов мы получили в трех опытах следующие значения: 99,8 г; 101,2 г; 100,3 г.
Инструментальная погрешность весов d = 0,05 г.
Найдем истинное значение массы и абсолютную погрешность.
Составим расчетную таблицу:
№ опыта | 1 | 2 | 3 | Сумма |
Масса, г | 99,8 | 101,2 | 100,3 | 301,3 |
Абсолютное отклонение, г | 0,6 | 0,8 | 0,1 | 1,5 |
Сначала находим среднее значение всех измерений: begin{gather*} m_0=frac{99,8+101,2+100,3}{3}=frac{301,3}{3}approx 100,4 text{г} end{gather*} Это среднее значение принимаем за истинное значение массы.
Затем считаем абсолютное отклонение каждого опыта как модуль разности (m_0) и измерения. begin{gather*} triangle_1=|100,4-99,8|=0,6\ triangle_2=|100,4-101,2|=0,8\ triangle_3=|100,4-100,3|=0,1 end{gather*} Находим среднее абсолютное отклонение: begin{gather*} triangle_{cp}=frac{0,6+0,8+0,1}{3}=frac{1,5}{3}=0,5 text{(г)} end{gather*} Мы видим, что полученное значение (triangle_{cp}) больше инструментальной погрешности d.
Поэтому абсолютная погрешность измерения массы: begin{gather*} triangle m=maxleft{triangle_{cp}; dright}=maxleft{0,5; 0,05right} text{(г)} end{gather*} Записываем результат: begin{gather*} m=m_0pmtriangle m\ m=(100,4pm 0,5) text{(г)} end{gather*} Относительная погрешность (с двумя значащими цифрами): begin{gather*} delta_m=frac{0,5}{100,4}cdot 100text{%}approx 0,050text{%} end{gather*}
п.6. Представление результатов эксперимента
Результат измерения представляется в виде $$ a=a_0pmtriangle a $$ где (a_0) – истинное значение, (triangle a) – абсолютная погрешность измерения.
Как найти результат прямого измерения, мы рассмотрели выше.
Результат косвенного измерения зависит от действий, которые производятся при подстановке в формулу величин, полученных с помощью прямых измерений.
Погрешность суммы и разности
Если (a=a_0+triangle a) и (b=b_0+triangle b) – результаты двух прямых измерений, то
- абсолютная погрешность их суммы равна сумме абсолютных погрешностей
$$ triangle (a+b)=triangle a+triangle b $$
- абсолютная погрешность их разности также равна сумме абсолютных погрешностей
$$ triangle (a-b)=triangle a+triangle b $$
Погрешность произведения и частного
Если (a=a_0+triangle a) и (b=b_0+triangle b) – результаты двух прямых измерений, с относительными погрешностями (delta_a=frac{triangle a}{a_0}cdot 100text{%}) и (delta_b=frac{triangle b}{b_0}cdot 100text{%}) соответственно, то:
- относительная погрешность их произведения равна сумме относительных погрешностей
$$ delta_{acdot b}=delta_a+delta_b $$
- относительная погрешность их частного также равна сумме относительных погрешностей
$$ delta_{a/b}=delta_a+delta_b $$
Погрешность степени
Если (a=a_0+triangle a) результат прямого измерения, с относительной погрешностью (delta_a=frac{triangle a}{a_0}cdot 100text{%}), то:
- относительная погрешность квадрата (a^2) равна удвоенной относительной погрешности
$$ delta_{a^2}=2delta_a $$
- относительная погрешность куба (a^3) равна утроенной относительной погрешности
$$ delta_{a^3}=3delta_a $$
- относительная погрешность произвольной натуральной степени (a^n) равна
$$ delta_{a^n}=ndelta_a $$
Вывод этих формул достаточно сложен, но если интересно, его можно найти в Главе 7 справочника по алгебре для 8 класса.
п.7. Задачи
Задача 1. Определите цену деления и объем налитой жидкости для каждой из мензурок. В каком случае измерение наиболее точно; наименее точно?
Составим таблицу для расчета цены деления:
№ мензурки | a, мл | b, мл | n | (triangle=frac{b-a}{n+1}), мл |
1 | 20 | 40 | 4 | (frac{40-20}{4+1}=4) |
2 | 100 | 200 | 4 | (frac{200-100}{4+1}=20) |
3 | 15 | 30 | 4 | (frac{30-15}{4+1}=3) |
4 | 200 | 400 | 4 | (frac{400-200}{4+1}=40) |
Инструментальная точность мензурки равна половине цены деления.
Принимаем инструментальную точность за абсолютную погрешность и измеренное значение объема за истинное.
Составим таблицу для расчета относительной погрешности (оставляем две значащих цифры и округляем с избытком):
№ мензурки | Объем (V_0), мл | Абсолютная погрешность (triangle V=frac{triangle}{2}), мл |
Относительная погрешность (delta_V=frac{triangle V}{V_0}cdot 100text{%}) |
1 | 68 | 2 | 3,0% |
2 | 280 | 10 | 3,6% |
3 | 27 | 1,5 | 5,6% |
4 | 480 | 20 | 4,2% |
Наиболее точное измерение в 1-й мензурке, наименее точное – в 3-й мензурке.
Ответ:
Цена деления 4; 20; 3; 40 мл
Объем 68; 280; 27; 480 мл
Самое точное – 1-я мензурка; самое неточное – 3-я мензурка
Задача 2. В двух научных работах указаны два значения измерений одной и той же величины: $$ x_1=(4,0pm 0,1) text{м}, x_2=(4,0pm 0,03) text{м} $$ Какое из этих измерений точней и почему?
Мерой точности является относительная погрешность измерений. Получаем: begin{gather*} delta_1=frac{0,1}{4,0}cdot 100text{%}=2,5text{%}\ delta_2=frac{0,03}{4,0}cdot 100text{%}=0,75text{%} end{gather*} Относительная погрешность второго измерения меньше. Значит, второе измерение точней.
Ответ: (delta_2lt delta_1), второе измерение точней.
Задача 3. Две машины движутся навстречу друг другу со скоростями 54 км/ч и 72 км/ч.
Цена деления спидометра первой машины 10 км/ч, второй машины – 1 км/ч.
Найдите скорость их сближения, абсолютную и относительную погрешность этой величины.
Абсолютная погрешность скорости каждой машины равна инструментальной, т.е. половине деления спидометра: $$ triangle v_1=frac{10}{2}=5 (text{км/ч}), triangle v_2=frac{1}{2}=0,5 (text{км/ч}) $$ Показания каждого из спидометров: $$ v_1=(54pm 5) text{км/ч}, v_2=(72pm 0,5) text{км/ч} $$ Скорость сближения равна сумме скоростей: $$ v_0=v_{10}+v_{20}, v_0=54+72=125 text{км/ч} $$ Для суммы абсолютная погрешность равна сумме абсолютных погрешностей слагаемых. $$ triangle v=triangle v_1+triangle v_2, triangle v=5+0,5=5,5 text{км/ч} $$ Скорость сближения с учетом погрешности равна: $$ v=(126,0pm 5,5) text{км/ч} $$ Относительная погрешность: $$ delta_v=frac{5,5}{126,0}cdot 100text{%}approx 4,4text{%} $$ Ответ: (v=(126,0pm 5,5) text{км/ч}, delta_vapprox 4,4text{%})
Задача 4. Измеренная длина столешницы равна 90,2 см, ширина 60,1 см. Измерения проводились с помощью линейки с ценой деления 0,1 см. Найдите площадь столешницы, абсолютную и относительную погрешность этой величины.
Инструментальная погрешность линейки (d=frac{0,1}{2}=0,05 text{см})
Результаты прямых измерений длины и ширины: $$ a=(90,20pm 0,05) text{см}, b=(60,10pm 0,05) text{см} $$ Относительные погрешности (не забываем про правила округления): begin{gather*} delta_1=frac{0,05}{90,20}cdot 100text{%}approx 0,0554text{%}approx uparrow 0,056text{%}\ delta_2=frac{0,05}{60,10}cdot 100text{%}approx 0,0832text{%}approx uparrow 0,084text{%} end{gather*} Площадь столешницы: $$ S=ab, S=90,2cdot 60,1 = 5421,01 text{см}^2 $$ Для произведения относительная погрешность равна сумме относительных погрешностей слагаемых: $$ delta_S=delta_a+delta_b=0,056text{%}+0,084text{%}=0,140text{%}=0,14text{%} $$ Абсолютная погрешность: begin{gather*} triangle S=Scdot delta_S=5421,01cdot 0,0014=7,59approx 7,6 text{см}^2\ S=(5421,0pm 7,6) text{см}^2 end{gather*} Ответ: (S=(5421,0pm 7,6) text{см}^2, delta_Sapprox 0,14text{%})
Смелое заявление: в экспериментальной науке неукоснительная точность измерений не достижима. Ну, с одной стороны, это действительно так. С другой стороны, точность все-таки — понятие относительное. Если учитывать погрешность измерений, то, оказывается, «приручаются» даже самые разбросанные величины. Научимся же приручать. Сегодня о том, что такое погрешность. Как найти погрешность, как выглядит формула погрешности — рассказываем и показываем.
Откуда берется погрешность измерений?
Одна из самых быстрых машин, которую можно встретить на городской дороге — BMW M8 Competition. Согласно тестированиям автопроизводителя способна разгоняться до 100 км/ч за впечатляющие 2.5 с. Иными словами, вы успеете моргнуть лишь единожды. Прежде, чем спидометр стильного немецкого купе выдаст отметку «100» и, озорно светя задними габаритными огнями, улетит в закат.
Физические величины различного рода и их измерения так или иначе окружают нас везде. К примеру, та же вышеупомянутая динамика разгона. Время, за которое транспортное средство разгоняется до определенной скорости, является важным параметром для любого автомобилиста, приобретающего новенький спорткар в салоне.
В жару мы то и дело поглядываем на отметку термометра. И ужасаемся, когда температура на отметке безжалостно приближается к 40 °C. Если опаздываем, то обязательно держим под рукой часы и проверяем время по минутам.
Когда худеем, каждое утро начинаем со взвешивания и фиксируем массу своего тела в килограммах. Расстраиваемся, если набрали пару сотен лишних граммов.
Это — физические величины. Правда несмотря на то, что физика относится к наукам точным, как бы удивительно ни было, ни одна ее величина — ни время, ни длина, ни скорость, ни что-либо еще — не может быть выражена с предельной точностью.
Ведь вряд ли вы весите, скажем, ровно 60 килограмм без единого лишнего миллиграмма. Или имеете рост ровно 170 сантиметров. Ровно так же, как и BMW M8 Competition не разгоняется до 100 км/ч абсолютно ровно за две с половиной секунды.
Что такое точность измерений?
Точность измерений характеризует близость результата измерения к фактическому значению измеряемой величины. Строго говоря, ни одна физическая величина не может быть измерена с абсолютной точностью. То есть так, чтобы данные измерительного прибора отображали истинное значение.
Мир и его явления, на самом деле, практически всегда имеют отношение к иррациональным числам. Таким, как, к примеру, результат деления десяти на три. Наберите, кстати, данную операцию на калькуляторе и посмотрите на то, как неэстетично в реальности выглядят данные — с кучей знаков после запятой, за которыми не угнаться.
Однако иррациональность чисел не удивляет, да и слишком абстрактна, дабы уловить суть. Что есть деление? Тогда, для конкретности, стоит покуситься на святое — на время. Казалось бы, что может быть точнее времени, показываемого самыми точными на свете часами — атомными часами?
И тем не менее, даже если вы зайдете на онлайн-ресурс, официально регистрирующий международное атомное время с точностью до миллисекунд, действительного точного измерения времени там вы не найдете.
Всегда есть условности: задержка передачи данных между сетевыми элементами; ваш мозг, регистрирующий и обрабатывающий информацию, поступающую через органы чувств и т. д. Все это отдаляет нас, хоть и несущественно, от фактического значения величины времени.
Именно поэтому в физике одним из важнейших понятий является понятие погрешность измерений.
Цена деления и точность измерений
Представьте, что вас отправили в магазин купить сахар, но вот незадача: фасованный в пачках как раз закончился и остался только на развес. Что делать, вы просите продавца тогда отмерить вам ровно килограмм. Продавец взял лопатку, наполнил пакет, положил его на весы, и они выдают значение — 1.000 кг.
Как удачно положили.
Вы рассчитываетесь и счастливым возвращаетесь домой. А теперь представим, что по необыкновенной случайности у вас дома имеются весы. Они показывают массу с точностью до миллиграмма. Вы решаете интереса ради перевесить пакет, чтобы посмотреть, действительно ли его масса равна строго килограмму.
И какого же удивление, когда более точные весы показывают массу не в 1.000 кг, а в 0.999990 кг. Иными словами, вас обсчитали. Обсчитали, между прочим, на десять миллиграмм!
Чем меньше цена деления прибора, тем точнее измерение.
Ваши весы с учетом массы до миллиграмма оказались точнее магазинных «граммовых» весов. Однако и это не предел, ведь существуют фармакологические весы, определяющие массу до микрограмма — одной миллиардной килограмма. Так можно продолжать до бесконечности, пока у нас не закончатся технологические возможности сконструировать еще более точные весы.
Однако все измерительные приборы, пусть и самые точные, несовершенны. Несовершенно даже само то, как мы видим, слышим и ощущаем мир вокруг. Это, наряду с прочими факторами, приводит к тому, что при измерении величины получается ее приближенное значение, не истинное.
Что такое погрешность измерений?
Мы готовы дать определение тому, что такое погрешность:
Погрешность — это разница между приближенным и истинным значениями.
В физике погрешность — обыденное явление, присутствующее внутри практически каждой величины, и мало что имеет общего с ошибкой в привычном понимании слова.
Все величины, которые, к примеру, вы видите в типовых физических задачах на вычисление, так или иначе содержат погрешность. Ее не обозначают для удобства. Поэтому помните о невозможности проводить эксперименты в идеальных условиях и о том, что ни один прибор чаще всего не сможет показать результат таким, каков он есть на самом деле.
Важно. Погрешность не равно ошибке. В обычном, бытовом языке мы привыкли к тому, что слово «погрешность» у нас ассоциируется с просчетом или упущением.
Как правило, при однократном проведении измерения определить значение погрешности крайне затруднительно: для ее выявления обычно проводят серию равноточных измерений — измерений, произведенных в одинаковых условиях.
После результаты сличаются, то есть сравниваются между собой и, при необходимости, сопоставляются с различными экспериментальными величинами. На основе данных, полученных в результате измерений и сличения, вычисляется погрешность.
Как найти погрешность: эксперимент с линейкой
Обнаружить явление погрешности можно самостоятельно вне строгой лабораторной обстановки: достаточно провести простой эксперимент измерения длины с обычной школьной линейкой. В качестве примера, возьмем карандаш и выполним с ним замеры.
Во-первых, необходимо зафиксировать цену деления измерительного прибора. Цена деления определяется разностью двух ближайших отметок. В нашем случае она равна 1 см.
Примечание. На разметке измерительного прибора всегда указываются единицы измерения. К примеру, на стандартной линейке можно увидеть пометку «см», сантиметры.
Довольно часто используемые для измерений приборы не работают с основными единицами СИ — единицы величин либо являются производными, как сантиметр, либо, как миллиметр ртутного столба, являются внесистемными.
Когда вас просят привести ответ в СИ, не забывайте о переводе значений, если измерительный прибор работает с внесистемными или производными единицами. В случае с сантиметровой линейкой, при подобном требовании, обязательно выражение результата в метрах и т. п.
Далее совмещаем конец карандаша с нулевой отметкой. Видим, что второй конец располагается между отметками 12 и 13.
Какой из этих результатов следует принять за длину нашего карандаша?
Очевидно, что тот, который будет ближе к истинному значению — 12 см. Если бы мы провели аналогичный опыт, использовав более точную линейку с ценой деления в миллиметр, мы получили бы значение 12.2 см.
А какой из этих результатов лучше будет засчитать теперь? Какой правильный?
Оба результата фактически являются верными, их разница заключается лишь в том, что получены они были с разной точностью измерения: длина карандаша во втором варианте была дана с точностью до миллиметра, в первом — до сантиметра. Можно было бы воспользоваться микро́метром, еще более точным измерительными прибором, и получить результат с точностью до микроме́тра. Однако в случае с карандашом точности до миллиметра будет достаточно.
Наш ответ: 12.2 см.
Вычисление погрешности
Но что делать, если бы мы захотели учесть погрешность? Как ее вычислить и обозначить математически?
На самом деле, точно определить погрешность не так просто. Для этого необходимо владение методами математической статистики, для чего требуется уже знание высшей математики. Плюс немаловажно определение комплексных параметров вроде класса точности измерительного прибора.
Поэтому для простоты измерений с погрешностью считается, что обычно она равна половине цены деления прибора. В нашем эксперименте при цене деления линейки в сантиметр погрешность составила 0.5 см. При цене деления в миллиметр — 0.05 см.
Еще раз, внимание:
За погрешность измерений берется половина цены деления прибора.
Так, полученные замеры, где $l$ — длина карандаша, можно было бы записать в следующем виде:
$l$ = 12 ± 0.5 cм — в случае, когда цена деления составляла сантиметр;
$l$ = 12.2 ± 0.05 см — в случае, когда цена деления составляла миллиметр.
Математический символ плюс-минус (±) используется для обозначения интервала значений и расшифровывается следующим образом: истинное значение величины заключено в диапазоне «от-до».
Формула погрешности
Таким образом, общая формула для записи величин с погрешностью выглядит следующим образом:
$X = x pm Delta x,$
где $X$ — измеряемая величина, $x$ — результат измерений, $Delta x$ — погрешность.
Выходит, что истинное значение длины карандаша располагается в диапазоне значений от 11.5 см до 12.5 см.
При более точных замерах до миллиметра: от 12.15 см до 12.25 см.
Однако остается один последний интересный момент. Несмотря на то, что мы провели замеры и определили длину, философски говоря, вопрос остается вопросом: так какую же точную длину имеет карандаш?
Таковы погрешности. Где-то от, где-то до.
А точно — никак.
Измерение физических величин основано на том, что физика исследует объективные закономерности, которые происходят в природе.
Найти значение физической величины — умножить конкретное число на единицу измерения данной величины, которая стандартизирована (эталоны).
Обрати внимание!
Процесс измерения физической величины состоит из:
1) поиска её значения с помощью опытов и средств измерения;
2) вычисления достоверности (точности измерений) полученного значения.
Точность измерений зависит от многих причин:
- расположение наблюдателя относительно измерительного прибора: если на линейку смотреть сбоку, погрешность измерений произойдёт по причине неточного определения полученного значения;
- деформация измерительного прибора: металлические и пластиковые линейки могут изогнуться, сантиметровая лента растягивается со временем;
- несоответствие шкалы прибора эталонным значениям: при множественном копировании эталонов может произойти ошибка, которая будет множиться;
- физический износ шкалы измерений, что приводит к невозможности распознавания значений.
Рассмотрим на примере измерения длины бруска линейкой с сантиметровой шкалой.
Рис. (1). Линейка и брусок
Внимательно рассмотрим шкалу. Расстояние между двумя соседними метками составляет (1) см. Если этой линейкой измерять брусок, который изображён на рисунке, то правый конец бруска будет находиться между (9) и (10) метками.
У нас есть два варианта определения длины этого бруска.
(1). Если мы заявим, что длина бруска — (9) сантиметров, то недостаток длины от истинной составит более половины сантиметра ((0,5) см (= 5) мм).
(2). Если мы заявим, что длина бруска — (10) сантиметров, то избыток длины от истинной составит менее половины сантиметра ((0,5) см (= 5) мм).
Погрешность измерений — это отклонение полученного значения измерения от истинного.
Погрешность измерительного прибора равна цене деления прибора.
Для первой линейки цена деления составляет (1) сантиметр. Значит, погрешность этой линейки (1) см.
Если нам необходимо произвести более точные измерения, то следует поменять линейку на другую, например, с миллиметровыми делениями. В этом случае цена деления будет равна (1) мм, а длина бруска — (9,8) см.
Рис. (2). Деревянная линейка
Если же необходимы ещё более точные измерения, то нужно найти прибор с меньшей ценой деления, например, штангенциркуль. Существуют штангенциркули с ценой деления (0,1) мм и (0,05) мм.
Рис. (3). Штангенциркуль
На процесс измерения влияют следующие факторы: масштаб шкалы прибора, который определяет значения делений и расстояние между ними; уровень экспериментальных умений.
Считается, что погрешность прибора превосходит по величине погрешность метода вычисления, поэтому за абсолютную погрешность принимают погрешность прибора.
Результаты измерения записывают в виде
A=a±Δa
, где (A) — измеряемая величина, (a) — средний результат полученных измерений,
Δa
— абсолютная погрешность измерений.
Источники:
Рис. 1. Линейка и брусок. © ЯКласс.
- Подробности
- Обновлено 20.01.2019 00:19
- Просмотров: 527
При изучений физических явлений проводят различные измерения.
Физики измеряют физические величины.
Например:
При изучении падение тела, надо измерить высоту, с которой падает тело, массу тела, его скорость и время падения.
Чтобы узнать, например, зависит ли объем воды или другой жидкости от ее температуры и как зависит, нужно, нагревая воду, измерять и объем, и температуру.
Объем и температура, время и длина, площадь, скорость, масса, сила — это физические величины.
1. Что значит измерить?
Измерить какую-либо физическую величину — это значит сравнить ее с однородной величиной, принятой за единицу этой величины.
Например:
Измерить длину стола — значит сравнить ее с другой длиной, которая принята за единицу длины, например с метром.
В результате измерения величины получаем ее числовое значение, выраженное в принятых единицах.
2. Какие бывают единицы имерения?
Для каждой физической величины приняты свои единицы измерения.
Очень удобно пользоваться одинаковыми единицами физических величин во всех странах мира.
Поэтому с 1963 г. применяется Международная система единиц — СИ (система интернациональная).
Основные единицы в системе СИ:
единица длины — 1 метр (1м),
единица времени — 1 секунда (1с),
единица массы — 1 килограмм (1 кг).
Кроме того, используются кратные единицы (кратные основной единице), которые в 10, 100, 1000 и т. д. раз больше.
Эти единицы получили наименования с приставками, взятыми из греческого языка.
«Дека» — 10, «гекто» — 100, «кило» — 1000 и др.
Используются и дольные единицы, которые в 10, 100, 1000 и т. д. раз меньше принятых единиц величин.
В них применяют приставки, также взятые из латинского языка. «Деци» — 0,1, «санти» — 0,01, «милли» — 0,001 и др.
Некоторые приставки к названиям единиц:
г — гекто (100 или 102)
к — кило (1000 или 103)
М — мега (1 000 000 или 106)
д — деци (0,1 или 10-1)
с — санти (0,01 или 10-2)
м — милли (0,001 или 10-3)
Например:
Длина столовой ложки 20 см.
Ее длина в метрах (м):
20 см = 0,20 м или 2 • 10-1 м.
3. Что такое измерителный прибор?
Для измерения физических величин нужны измерителные приборы.
Есть измерителные приборы для простых измерений. Например, измерительная линейка, рулетка, мензурка, применяемая для измерения объема жидкости.
Есть сложные измерительные приборы: секундомеры, термометры и другие.
По мере развития физики и техники приборы усложнялись и появились, например, приборы, при помощи которых изучают строение вещества.
У измерительных приборов есть измерительная шкала, на которой штрихами нанесены деления и написаны значения величин.
Между двумя большими штрихами могут быть дополнительно нанесены несколько делений, не обозначенных числами.
Значение измеряемой величины между ближайшими штрихами называется ценой деления прибора.
Например, у обычной школьной линейки расстояние между двумя ближайшими штрихами составляет 1 мм, это цена деления линейки.
4. Как определить цену деления измерительной шкалы прибора?
Прежде чем использовать измерительный прибор, надо определить цену деления этого прибора.
Надо установить, какому значению величины соответствует каждое самое малое деление.
Для того чтобы определить цену деления, необходимо:
— найти два ближайших штриха шкалы, возле которых написаны значения величины;
— вычесть из большего значения меньшее и полученное число разделить на число делений, находящихся между ними.
5. Примеры определения цены деления
а) Определение цены деления секундомера.
Используем любые два штриха, около которых нанесены значения измеряемой величины (времени), например штрихи с обозначениями 5 и 10 с.
Расстояние между этими штрихами разделено на 10 делений. Значит, цена каждого деления равна:
Секундомер показывает 22 с.
б) Определение цены деления термометра.
Возьмем, например, ближайшие друг к другу штрихи с обозначениями 10 °С и 20 °С. Расстояния между ними разделены на 10 делений. Следовательно,
цена каждого деления будет равна: 20 °С — 10 °С = 10 °С, далее 10 °С : 10 = 1 °С.
Термометр показывает 24 °С.
6.
Что такое точность и погрешность измерений?
Любое измерение может быть выполнено с большей или меньшей точностью.
В физике допускаемую при измерении неточность называют погрешностью измерения.
Погрешность измерения не может быть больше цены деления измерительного прибора.
Из этого примера видно, что точность измерений зависит от цены деления шкалы прибора.
Чем меньше цена деления, тем больше точность измерения.
При измерении принято считать, что: погрешность измерений равна половине цены деления шкалы измерительного прибора.
При записи величин, с учетом погрешности, пользуются формулой:
где А — измеряемая величина,
а — результат измерений,
дельта а — погрешность измерений (треуголник — греч. буква «дельта»).
Например:
Если длина книги 20 см, а цена деления линейки 1 мм, то погрешность измерения будет равна 0,5 мм, или 0,05 см.
Следовательно, длину книги можно записать так:
L = (20 ±0,05) см,
где L — длина книги.
Истинное значение длины книги находится в интервале от 19,95 см до 20,05 см.
Главное:
Измерить какую-либо величину — это значит сравнить ее с однородной величиной, принятой за единицу этой величины.
Основные единицы системы СИ: метр, килограмм, секунда.
Для того чтобы определить цену деления, необходимо:
— найти два ближайших штриха шкалы, возле которых написаны значения величины;
— вычесть из большего значения меньшее и полученное число разделить на число делений, находящихся между ними.
Следующая страница — смотреть
Назад в «Оглавление» — смотреть