4. Определение равнодействующей аналитическим способом
Проекция сил на ось определяется отрезком оси, отсекаемой перпендикулярами, опущенными на ось из начала и конца вектора.
Величина проекции силы на ось равна произведению модуля силы на косинус угла между вектором силы и положительным направлением сил. Проекция имеет знак: положительный при одинаковом направлении вектора силы и оси и отрицательный при направлении в сторону отрицательной полуоси.
Проекция силы на две взаимно перпендикулярные оси.
Fx = Fcosα > 0
Fy = Fcosβ = Fsinα > 0
Величина равнодействующей равна векторной (геометрической) сумме векторов системы сил. Определим равнодействующую аналитическим способом. Выберем систему координат, определим проекции всех заданных векторов на эти оси. Складываем проекции всех векторов на оси х и у.
FΣx= F1x + F2x + F3x + F4x;
FΣy= F1y + F2y + F3y + F4y.
Модуль (величину) равнодействующей можно определить по известным проекциям:
Направление вектора равнодействующей можно определить по величинам и знакам косинусов углов, образуемых равнодействующими с осями координат:
Плоская система сходящихся сил находится в равновесии, если алгебраическая сумма проекций всех сил системы на любую ось равна нулю.
Система уравнений равновесия плоской системы сходящихся сил:
При решении задач координатные оси выбирают так, чтобы решение было наиболее простым. При этом желательно, чтобы хотя бы одна неизвестная сила совпадала с осью координат.
I. Механика
Тестирование онлайн
Определение
Это векторная сумма всех сил, действующих на тело.
Велосипедист наклоняется в сторону поворота. Сила тяжести и сила реакции опоры со стороны земли дают равнодействующую силу, сообщающую центростремительное ускорение, необходимое для движения по окружности
Взаимосвязь со вторым законом Ньютона
Вспомним закон Ньютона:
Равнодействующая сила может быть равна нулю в том случае, когда одна сила компенсируется другой, такой же силой, но противоположной по направлению. В этом случае тело находится в покое или движется равномерно.
Сила Архимеда уравновешивается силой тяжести, тело равномерно перемещается в жидкости вниз. |
Сила тяжести уравновешивается силой упругости. Книга покоится |
Если равнодействующая сила НЕ равна нулю, то тело движется равноускоренно. Собственно именно эта сила является причиной неравномерного движения. Направление равнодействующей силы всегда совпадает по направлению с вектором ускорения.
Когда требуется изобразить силы, действующие на тело, при этом тело движется равноускоренно, значит в направлении ускорения действующая сила длиннее противоположной. Если тело движется равномерно или покоится длина векторов сил одинаковая.
Сила реакции опоры (сила, направленная вверх) длиннее силы тяжести, так как шарик движется по окружности, центростремительное ускорение направлено вверх |
Сила реакции опоры (сила, направленная вверх) короче силы тяжести, так как шарик движется по окружности, центростремительное ускорение направлено вниз. Вектор силы тяжести, направленный вниз, длиннее. |
Нахождение равнодействующей силы
Для того, чтобы найти равнодействующую силу, необходимо: во-первых, верно обозначить все силы, действующие на тело; затем изобразить координатные оси, выбрать их направления; на третьем шаге необходимо определить проекции векторов на оси; записать уравнения.
Кратко: 1) обозначить силы; 2) выбрать оси, их направления; 3) найти проекции сил на оси; 4) записать уравнения.
Как записать уравнения? Если в некотором направлении тело двигается равномерно или покоится, то алгебраическая сумма (с учетом знаков) проекций сил равна нулю. Если в некотором направлении тело движется равноускоренно, то алгебраическая сумма проекций сил равна произведению массы на ускорение, согласно второму закону Ньютона.
Примеры
На движущееся равномерно по горизонтальной поверхности тело, действуют сила тяжести, сила реакции опоры, сила трения и сила, под действием которой тело движется.
Обозначим силы, выберем координатные оси
Найдем проекции
Записываем уравнения
Тело, которое прижимают к вертикальной стенке, равноускоренно движется вниз. На тело действуют сила тяжести, сила трения, реакция опоры и сила, с которой прижимают тело. Вектор ускорения направлен вертикально вниз. Равнодействующая сила направлена вертикально вниз.
Тело равноускоренно движется по клину, наклон которого альфа. На тело действуют сила тяжести, сила реакции опоры, сила трения.
Главное запомнить
1) Если тело покоится или движется равномерно, то равнодействующая сила равна нулю и ускорение равно нулю;
2) Если тело движется равноускоренно, значит равнодействующая сила не нулевая;
3) Направление вектора равнодействующей силы всегда совпадает с направлением ускорения;
4) Уметь записывать уравнения проекций действующих на тело сил
Системы и блоки*
Формула равнодействующей всех сил в физике
Формула равнодействующей всех сил
Первый закон Ньютона говорит нам о том, что в инерциальных системах отсчета тела могут изменять скорость только, если на них оказывают воздействие другие тела. При помощи силы ($overline{F}$) выражают взаимное действие тел друг на друга. Сила способна изменить величину и направление скорости тела. $overline{F}$ — это векторная величина, то есть она обладает модулем (величиной) и направлением.
Определение и формула равнодействующей всех сил
В классической динамике основным законом, с помощью которого находят направление и модуль равнодействующей силы является второй закон Ньютона:
[overline{F}=moverline{a} left(1right),]
где $m$ — масса тела, на которое действует сила $overline{F}$; $overline{a}$ — ускорение, которое сила $overline{F}$ сообщает рассматриваемому телу. Смысл второго закона Ньютона заключается в том, что силы, которые действуют на тело, определяют изменение скорости тела, а не просто его скорость. Следует знать, что второй закон Ньютона выполняется для инерциальных систем отсчета.
На тело могут действовать не одна, а некоторая совокупность сил. Суммарное действие этих сил характеризуют, используя понятие равнодействующей силы. Пусть на тело оказывают действие в один и тот же момент времени несколько сил. Ускорение тела при этом равно сумме векторов ускорений, которые возникли бы при наличии каждой силы отдельно. Силы, которые оказывают действие на тело, следует суммировать в соответствии с правилом сложения векторов. Равнодействующей силой ($overline{F}$) называют векторную сумму всех сил, которые оказывают действие на тело в рассматриваемый момент времени:
[overline{F}={overline{F}}_1+{overline{F}}_2+dots +{overline{F}}_N=sumlimits^N_{i=1}{{overline{F}}_i} left(2right).]
Формула (2) — это формула равнодействующей всех сил, приложенных к телу. Равнодействующая сила является искусственной величиной, которую вводят для удобства проведения вычислений. Равнодействующая сила направлена как вектор ускорения тела.
Основной закон динамики поступательного движения при наличии нескольких сил
Если на тело действуют несколько сил, тогда второй закон Ньютона записывают как:
[sumlimits^N_{i=1}{{overline{F}}_i}=moverline{a}left(3right).]
$overline{F}=0$, если силы, приложенные к телу, взаимно компенсируют друг друга. Тогда в инерциальной системе отсчета скорость движения тела постоянна.
При изображении сил, действующих на тело, на рисунке, в случае равноускоренного движения, равнодействующую силу, изображают длиннее, чем сумму сил, которые противоположно ей направлены. Если тело перемещается с постоянной скоростью или покоится, длины векторов сил (равнодействующей и сумме остальных сил), одинаковы и направлены они в противоположные стороны.
Когда находят равнодействующую сил, на рисунке изображают все учитываемые в задаче силы. Суммируют эти силы в соответствии с правилами сложения векторов.
Примеры задач на равнодействующую сил
Пример 1
Задание. На материальную точку действуют две силы, направленные под углом $alpha =60{}^circ $ друг к другу. Чему равна равнодействующая этих сил, если $F_1=20 $Н; $F_2=10 $Н?
Решение. Сделаем рисунок.
Силы на рис. 1 складываем по правилу параллелограмма. Длину равнодействующей силы $overline{F}$ можно найти, используя теорему косинусов:
[F=sqrt{F^2_1+F^2_2+2F_1F_2{cos alpha }} left(1.1right).]
Вычислим модуль равнодействующей силы:
[F=sqrt{{20}^2+{10}^2+2cdot 20cdot 10{cos (60{}^circ ) }}approx 26,5 left(Нright).]
Ответ. $F=26,5$ Н
Пример 2
Задание. На материальную точку действуют силы (рис.2). Какова равнодействующая этих сил?
Решение. Равнодействующая сил, приложенных к точке (рис.2) равна:
[overline{F}={overline{F}}_1+{overline{F}}_2+{overline{F}}_3+{overline{F}}_4left(2.1right).]
Найдем равнодействующую сил ${overline{F}}_1$ и ${overline{F}}_2$. Эти силы направлены вдоль одной прямой, но в противоположные стороны, следовательно:
[F_{12}=F_1-F_2=17-11=6 left(Hright).]
Так как $F_1>F_2$, то сила ${overline{F}}_{12}$ направлена в туже сторону, что и сила ${overline{F}}_1$.
Найдем равнодействующую сил ${overline{F}}_3$ и ${overline{F}}_4$. Данные силы направлены вдоль одной вертикальной прямой (рис.1), значит:
[F_{34}=F_3-F_4=18-10=8 left(Нright).]
Направление силы ${overline{F}}_{34}$ совпадает с направлением вектора ${overline{F}}_3$, так как ${overline{F}}_3>{overline{F}}_4$.
Равнодействующую, которая действует на материальную точку, найдем как:
[overline{F}={overline{F}}_{12}+{overline{F}}_{34}left(2.2right).]
Силы ${overline{F}}_{12}$ и ${overline{F}}_{34}$ взаимно перпендикулярны. Найдем длину вектора $overline{F}$ по теореме Пифагора:
[F=sqrt{F^2_{12}+F^2_{34}}=sqrt{6^2+8^2}=10 left(Нright).]
Ответ. $F$=10 Н
Читать дальше: формула равнодействующей силы.
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Загрузить PDF
Загрузить PDF
Равнодействующая сила – это векторная сумма всех сил, которая действует на тело.[1]
Если равнодействующая сила равна нулю, то тело находится в покое. Неуравновешенная сила, или равнодействующая сила, значение которой больше или меньше нуля, приводит к ускорению тела.[2]
Суммировать все силы для поиска равнодействующей достаточно просто, но для этого сначала нужно рассчитать или измерить их величину. Как только вы изобразите простую схему действующих сил и убедитесь, что все силы имеют правильный вектор, вычисление равнодействующей силы покажется вам плевым делом.
-
1
Начертите диаграмму свободного тела. Диаграмма свободного тела – это схематичный набросок тела с обозначением векторов всех сил, которые на него действуют. Прочитайте задачу и набросайте схему рассматриваемого тела, обозначив каждую силу, действующую на это тело, стрелками.[3]
- Пример: Вычислить равнодействующую силу тела весом 20 Н, которое лежит на столе и которое толкают вправо под действием силы 5 Н, но при этом остается неподвижным из-за действующей на нее силы трения, равной 5 Н.
-
2
Обозначьте положительные и отрицательные направления сил. Как правило, вверх и вправо направлены силы с положительным значением, а вниз и влево – с отрицательным. Имейте в виду, что в одном направлении могут действовать сразу несколько сил. Силы, действующие в противоположном направлении, должны иметь отрицательные значения (одна положительная, одна отрицательная).[4]
- Если вам нужно представить несколько схем действующих сил, убедитесь, чтобы вектора сил были перенесены правильно.
- Согласно направлению векторов на схеме, пометьте силы знаком «+» или «-».
- Пример: Сила тяжести направлена вниз, делая ее отрицательной. Сила нормальной реакции направлена вверх, что делает ее положительной. Сила, с которой прижимают тело, направлена вправо, что делает ее положительной, тогда как сила трения действует в обратном направлении, то есть, влево (отрицательная).
-
3
Обозначьте все силы. Обозначьте все силы, которые действуют на тело. Если тело лежит на горизонтальной поверхности, на него действует сила тяжести (Fтяж), направленная вниз, а также равная ей сила нормальной реакции, направленная в противоположную сторону (Fн). Помимо этих двух сил отметьте также и другие силы, указанные в задаче. Величину сил запишите в ньютонах рядом с их обозначением.[5]
- Для обозначения силы обычно используется символ F и первые буквы силы в нижнем индексе. Сила трения, к примеру, обозначается так: Fтр.
- Сила тяжести: Fтяж = -20 Н
- Сила нормальной реакции: Fн = +20 Н
- Сила трения: Fтр = -5 Н
- Сила, с которой прижимают тело: Fт = +5 Н
-
4
Сложите все значения. Теперь, когда мы определили вектора и величину всех действующих сил, осталось лишь сложить их вместе. Запишите уравнение для результирующей силы (Fрез), где Fрез будет равна сумме действующих на тело сил.[6]
- Пример: Fрез = Fтяж + Fн + Fтр + Fт = -20 + 20 -5 + 5 = 0 Н. Так как равнодействующая сила равна 0, тело находится в состоянии покоя.
Реклама
-
1
Изобразите схему действующих сил. Когда действие силы на тело происходит под углом, для определения ее величины необходимо найти горизонтальную (Fx) и вертикальную (Fy) проекции этой силы. Для этого мы будем использовать тригонометрию и угол наклона (обозначается символом θ «тета»). Угол наклона θ измеряется против часовой стрелки, начиная от положительной оси х.[7]
- Нарисуйте диаграмму действующих сил, включая угол наклона.
- Укажите вектор направления действия сил, а также их величину.
- Пример: Тело с силой нормальной реакции, равной 10 Н, движется вверх и вправо с силой 25 Н под углом в 45°. Также на тело действует сила трения, равная 10 Н.
- Перечень всех сил: Fтяж = -10 Н, Fн = + 10 Н, Fт = 25 Н, Fтр = -10 Н.
-
2
Вычислите Fx и Fy, используя основные тригонометрические соотношения. Представив наклонную силу (F) в качестве гипотенузы прямоугольного треугольника, а Fx и Fy – в качестве сторон этого треугольника, можно вычислить их по отдельности.[8]
- Напоминаем, что косинус (θ) = прилежащая сторона/гипотенуза. Fx = соз θ * F = cos(45°) * 25 = 17,68 Н.
- Напоминаем, что синус (θ) = противолежащая сторона/гипотенуза. Fy = sin θ * F = sin(45°) * 25 = 17,68 Н.
- Обратите внимание, что под углом на объект одновременно может действовать несколько сил, поэтому вам придется найти проекции Fx и Fy для каждой такой силы. Суммируйте все значения Fx, чтобы получить результирующую силу в горизонтальном направлении, и все значения Fy, чтобы получить результирующую силу в вертикальном направлении.
-
3
Перерисуйте схему действующих сил. Определив все горизонтальные и вертикальные проекции силы, действующие под углом, можете нарисовать новую схему действующих сил, указав также и эти силы. Сотрите неизвестную силу, а вместо нее укажите векторы всех горизонтальных и вертикальных величин.
- К примеру, вместо одной силы, направленной под углом, на схеме теперь будут представлены одна вертикальная сила, направленная вверх, величиной 17,68 Н, и одна горизонтальная сила, вектор которой направлен вправо, а величина равна 17,68 Н.
-
4
Сложите все силы, действующие по координатам х и у. После того как нарисуете новую схему действующих сил, вычислите результирующую силу (Fрез), сложив отдельно все горизонтальные силы и все вертикальные силы. Не забудьте следить за правильным направлением векторов.
- Пример: Горизонтальные вектора всех сил вдоль оси х: Fрезx = 17,68 – 10 = 7,68 Н.
- Вертикальные вектора всех сил вдоль оси у: Fрезy = 17,68 + 10 – 10 = 17,68 Н.
-
5
Вычислите вектор равнодействующей силы. На данном этапе у вас есть две силы: одна действует вдоль оси х, другая – вдоль оси у. Величина вектора силы является гипотенузой треугольника, образованного этими двумя проекциями. Для вычисления гипотенузы достаточно лишь задействовать теорему Пифагора: Fрез = √ (Fрезx2 + Fрезy2).[9]
- Пример: Fрезx = 7,68 Н, а Fрезy = 17,68 Н
- Подставим значения в уравнение и получим: Fрез = √ (Fрезx2 + Fрезy2) = √ (7,682 + 17,682)
- Решение: Fрез = √ (7,682 + 17,682) = √(58,98 + 35,36) = √94,34 = 9,71 Н.
- Сила, действующая под углом и вправо равна 9,71 Н.
Реклама
Об этой статье
Эту страницу просматривали 124 963 раза.
Была ли эта статья полезной?
Содержание:
- Система сходящихся сил
- Равнодействующая системы сходящихся сил
- Разложение силы по заданным направлениям
- Разложение силы по двум заданным направлениям
- Разложение силы по трем заданным направлениям
- Проекция силы на ось и плоскость
- Аналитический способ определения равнодействующей
- Условия и уравнения равновесия системы сходящихся сил
- Геометрическое условие равновесия
- Аналитические условия равновесия. Уравнения равновесия
- Методика решения задач на равновесие
- Примеры решения задач на равновесие под действием системы сходящихся сил
- Система сходящихся сил и решение задач
- Условия равновесия системы совпадающих сил
- Геометрический метод решения задач
- Аналитический метод решения задач
- Проекция силы на ось и на плоскость
- Аналитические условия равновесия системы совпадающих сил
- Образец выполнения и решения задач на темы С2
- Система сходящихся сил на плоскости
- Геометрическое условие равновесия системы сходящихся сил
- Геометрический метод решения задач
- Аналитические условия равновесия системы сходящихся сил
- Примеры решения задач на тему: Система сходящихся сил
Система сходящихся сил — это такая система сил, действующих на абсолютно твёрдое тело, в которой линии действия всех сил пересекаются в одной точке. Такая система сил является на плоскости статически определимой, если число неизвестных сил в ней не больше двух.
На странице -> решение задач по теоретической механике собраны решения задач и заданий с решёнными примерами по всем темам теоретической механики.
Система сходящихся сил
Определение:
Система сил, линии действия которых пересекаются в одной точке, называется системой сходящихся сил. Системы сходящихся сил могут быть плоскими и пространственными.
Нехай на тверде тіло діє система збіжних сил , лінії дії яких перетинаються в точці О (рис. 2.1, а).
Используя теорему 1.1, § 1.3, перенесем силы вдоль линий их действия в точку В и получим эквивалентную систему сил, приложенных к твердому телу в одной точке (рис. 2.1, б), которую еще называют пучком.
Равнодействующая системы сходящихся сил
Силы, приложенные в одной точке твердого тела, можно добавлять, используя аксиому о параллелограмм сил. Пусть к телу в точке О приложена система n сходящихся сил (рис. 2.2, а).
Найдем равнодействующую сил
и
(рис. 2.2, а):
(индекс в обозначении равнодействующей соответствует количеству положительных сил).
К равнодействующей добавим силу
. Получим
Составим равнодействующую с последней силой
и получим равнодействующую n сил. Итак,
есть система сходящихся сил эквивалентна одной силе — равнодействующей, которая равна векторной сумме этих сил и приложена в точке пересечения линий их действия
Как видно из рис. 2.2, б, построение параллелограммов сил эквивалентна построении векторного многоугольника сил. Для системы сил, изображенной на рис. 2.2, б, векторный многоугольник сил построим следующим образом: к концу вектора присоединим вектор, геометрически ровный
, а с его конца отложим вектор
и так далее. Вектор, проведенный из точки приложения первой силы
до конца вектора
, является равнодействующей силой
. Полученный таким образом многоугольник
называется силовым или многоугольником сил.
Замыкающая сторона силового многоугольника, которая направлена против его обхода, определяет равнодействующую как по величине, так и по направлению (Рис. 2.2, б). Определение равнодействующей системы сходящихся сил по правилу параллелограмма или силового многоугольника называется геометрическим способом определения равнодействующей.
В случае плоской системы сходящихся сил силовой многоугольник используется для графического определения равнодействующей. Изображая силы в определенном масштабе, величину равнодействующей силы определим непосредственным измерением ее на чертеже. Геометрический способ определения равнодействующей используется в графостатици.
Разложение силы по заданным направлениям
Разложить данную силу на несколько составляющих — значит найти такую систему нескольких сил, для которых данная сила равнодействующей. Эта задача является
неопределенной и имеет однозначное решение лишь при задании дополнительных условий. Такими дополнительными условиями могут, например, быть: 1) задания двух направлений, вдоль которых должны действовать составляющие силы; 2) задания
модулей обеих составляющих сил; 3) задания модуля одной составляющей силы и
направление второй. Рассмотрим два частных случая.
Разложение силы по двум заданным направлениям
Задача сводится к построению такого параллелограмма, у которого сила, которая разлагается, является диагональю, а стороны параллельны заданным направлениям. Например, на рис. 2.3, а, показано, что сила розкладаеься по направлениям АВ и AD на силы
и
— составляющие силы
(сила
и прямые АВ и АD лежат в одной плоскости).
Разложение силы по трем заданным направлениям
Если заданные направления АВ, АС и АD не лежащих в одной плоскости, то задача является определенной и сводится к построению такого параллелепипеда, в которого диагональ является заданной силой , а ребра параллельны заданным направлениям и определяют составляющие
(рис. 2.3, б).
Проекция силы на ось и плоскость
Аналитический способ решения задач статики основывается на понятии о проекции силы на ось. Проекция силы на ось является алгебраическая величина, равная произведению модуля силы на косинус угла между положительным направлением оси и силой (Рис. 2.4)
Отметим, что:
Проекцией силы на плоскость Oxy называется вектор
, который
соединяет проекции начала и конца вектора на эту плоскость (рис. 2.5).
В отличие от проекции силы на ось, проекция силы на плоскость является векторной величиной. Она характеризуется не только своим модулем, но и направлением в плоскости Oxу. Модуль проекции силы на плоскость
где θ — угол между направлением силы и плоскостью. В некоторых случаях для определения проекции силы на ось выгоднее найти сначала ее проекцию на плоскость,
в которой эта ось лежит, а потом найденную проекцию на плоскость спроектировать на эту ось.
Например, в случае, изображенном на рис. 2.5, таким способом найдем, что:
При решении многих задач механики удобно задавать силу через ее проекции на оси прямоугольной декартовой системы координат (рис. 2.6):
где
, — проекции силы
на соответствующие оси координат;
— единичные орты осей
По известным проекциями силы на оси координат можно определить модуль силы и углы, которые она образует с координатными осями, по формулам:
Аналитический способ определения равнодействующей
Кроме геометрического существует еще и аналитический способ определения равнодействующей системы сходящихся сил. Если равенство (2.1) спроектируем на оси
декартовой системы координат (рис. 2.2, а), то получим:
где — проекции равнодействующей
на оси координат;
, — проекции силы
на оси координат.
Итак, проекция равнодействующей системы сходящихся сил на эту ось равна алгебраической сумме проекций составляющих сил на эту же ось.
Поскольку формулы (2.7) определяют проекции равнодействующей на три взаимно перпендикулярные оси, то модуль и направление равнодействующей вычисляются по формулам:
Условия и уравнения равновесия системы сходящихся сил
По определению уравновешенной системы сил имеем
а для системы сходящихся сил (см. § 2.2) получили
Сравнивая эквивалентности (а) и (б), получим векторное условие равновесия: для равновесия системы сходящихся сил необходимо и достаточно, чтобы ее равнодействующая была равна нулю:
Векторное равенство (2.9) является необходимым и достаточным условием равновесия
системы сходящихся сил. Условия, которым при этом должны удовлетворять самые силы, можно выразить в геометрической или аналитической форме.
Геометрическое условие равновесия
Как известно, равнодействующая — это замыкающая сторона силового многоугольника (рис. 2.2, б). Условие (2.9) будет выполняться только тогда, когда конец последней силы совместится с началом первой силы при построении силового многоугольника, то есть когда силовой многоугольник будет замкнутым. Необходимым и достаточным условием равновесия системы сходящихся сил есть замкнутость ее силового многоугольника (рис. 2.2, в).
Аналитические условия равновесия. Уравнения равновесия
Аналитические условия равновесия системы сходящихся сил вытекают из условия (2.9), согласно которой модуль равнодействующей равна нулю. Используя формулу (2.8), получаем или, согласно с (2.7),
Это означает, что для равновесия системы сходящихся сил необходимо и достаточно, чтобы алгебраические суммы проекций всех сил на три взаимно перпендикулярные
оси равны нулю.
Равенства (2.10) называются аналитическими условиями равновесия системы сходящихся сил.
Для случая плоской системы сходящихся сил будем иметь:
Итак, задачи на равновесие системы сходящихся сил можно решать двумя способами — геометрически и аналитически. Первый способ удобен для плоской системы сходящихся сил.
Аналитические условия равновесия (2.10) или (2.11), расписаны для конкретной задачи, в которые входят неизвестные параметры, реакции связей, активные силы, расстояния, углы и т.д., называются уравнениями равновесия.
При решении задач статики реакции связей всегда есть неизвестными величинами. Для их определения используют условия равновесия той или другой системы сил.
Задачи, в которых число неизвестных величин равно числу уравнений равновесия, в которые они входят, называются статически определенными. Системы, для которых это имеет место, называются статически определенными.
Задачи, в которых число неизвестных величин больше, чем число уравнений равновесия, в которые входят эти величины, называются статически неопределенными. Системы, для которых это имеет место, называются статически неопределенными.
Методика решения задач на равновесие
Все задачи на равновесие желательно решать по такой методике.
1. Следуя масштаба, сделать четкий схематический рисунок к задачи.
2. Выбрать объект равновесия. Последним может быть точка, тело или
система тел, к которым приложено заданные и неизвестные силы. Если заданы
силы действуют на одно тело, а неизвестные — на второе, то необходимо рассматривать
равновесие системы тел в целом или последовательно равновесие каждого тела.
3. Изобразить на рисунке все заданные силы, приложенные к объекту равновесия.
4. Условно освободить объект равновесия от наложенных связей, а их действие заменить реакциями связей. Изобразить на рисунке реакции связей.
5. Выяснить, какая система сил действует на объект равновесия и условия равновесия рационально использовать.
6. В соответствии с условиями равновесия составить уравнение равновесия или выполнить соответствующие графические построения.
7. Решить уравнение равновесия, найти неизвестные величины и проанализировать полученные результаты.
Все расчеты в процессе решения задачи рекомендуется выполнять в общем виде, а числовые значения подставлять только в конечные алгебраические выражения.
Примеры решения задач на равновесие под действием системы сходящихся сил
Задача 2.1. Однородная горизонтальная балка, вес которой, содержится в равновесии шарнирно-неподвижной опорой А и шарнирнорухомою опорой В (рис. 2.7). Определить реакции опор.
Решение. Объектом равновесия выберем балку АВ, на которую действует одна заданная сила приложенная посередине длины балки (рис. 2.7, б).
Мысленно освободимся от связей. Линия действия реакции перпендикулярна к плоскости, на которую опирается шарнирно-подвижная опора В. Известная точка приложения реакции
(точка А). Очевидно, что балка находится в равновесии под действием трех непараллельных сил, которые лежат в одной плоскости. Найдем точку пересечения линий их действия. Для этого продолжим линии действия сил
и
до пересечения в точке О. Согласно теореме о трех непараллельных силах, линия действия реакции
должна пройти через точку В (по линии АО) (Рис. 2.7, б).
Балка находится в равновесии под действием трех сходящихся сил . Используем геометрическое условие равновесия и построим замкнутый треугольник сил (рис. 2.7, в). Для этого в выбранном масштабе отложим вектор силы
с начала которого проведем прямую, параллельную линии АО, а с конца — прямую, параллельную линии ВО. Точка пересечения этих прямых определит конец вектора
и начало вектора
. С треугольника сил определим величины неизвестных реакций
и
.
Поскольку в , а линия действия силы
является медианой и высотой основы АВ, поэтому также
. Перенесем найдены углы на силовой треугольник. Решив его, получим
Задача 2.2. Вертикальный стояк подъемного крана опирается на подпятник A и подшипник В (рис. 2.8, а). В точке С действует вертикальная нагрузка Р = 20 кН. Высота стояка АВ равна 2 м, вылет стрелы крана — 4 м. Найти опорные реакции при условии, что кран находится в
равновесии.
Решение. Рассмотрим равновесие крана. На него действует заданная сила приложена в точке С. Применим принцип освобождения от связей и найдем направление реакций связей. Линия действия реакции в подшипнике
— горизонтальная; линия действия реакции подпятника
— неизвестно. поскольку три силы
, взаимно уравновешенные (кран находится в равновесии), лежат в одной плоскости и непараллельные, то они должны пересекаться в одной точке согласно теореме о трех силы. Найдем точку пересечения D линий действия сил
и
и соединим с ней точку А (рис. 2.8, б). прямая AD будет линией действия реакции
. Данную задачу также решим, используя геометрическую условие равновесия сходящейся системы сил. построим
замкнутый силовой треугольник (рис. 2.8, в). Видим, что треугольник сил подобен треугольника АВD (рис. 2.8, б). С подобия треугольников записываем отношение соответствующих сторон:
откуда определяем величины реакции связей и
Задачи 2.1, 2.2 могут быть решены аналитическим способом, с использованием условий равновесия произвольной плоской системы сил (см. раздел 6).
Задача 2.3. Груз Р весом 2 кН содержится в равновесии лебедкой D с помощью каната, перекинутого через блок B (рис 2.9, а). пренебрегая трением на блоке, определить усилия в стержнях AB и CВ, считая, что крепления в точках A, B и С — шарнирные. Углы показано на рис. 2.9, а. Размерами блока и весом стержней пренебречь.
Решение. Объект равновесия выбираем блок B, который рассматриваем как точку. К нему приложена заданная сила тяжести груза . Мысленно освободимся от связей и заменим действие их на блок В реакциями связей. Поскольку стержни АВ и ВС погружены в точке В, а их соединения — шарнирные, то они могут быть только или растянутыми или сжатыми,
то есть реакции стержней будут направлены вдоль их осей.
Стержень АВ является растянутый, поэтому его реакция будет направлена от точки В к
точки А, стрижень ВС — сжат, и его реакция направлена от точки С к точке В. Натяжение каната ВD будет направлен по линии каната, и, поскольку трением между блоком и канатом
пренебрегаем, то.
На блок В действует система сходящихся сил, расположенных в плоскости рисунка. Для решения задачи используем аналитические условия равновесия. Для этого выберем систему координат с началом в точке В (рис. 2.9, б) и запишем два уравнения равновесия (2.11):
Решим эти уравнения и определим неизвестные величины:
Анализируя полученные результаты, мы видим, что усилия и
полученные со знаком «+». Это означает, что действительно стержень AB работает на растяжение, а стержень ВС — на сжатие.
Задача 2.4. Найти усилия, возникающие в стержнях АВ, АС и AD (рис. 2.10) под действием
силы и силы тяжести груза
подвешенного в точке А. Плоскость прямоугольника АВОС — горизонтальная, крепления стержней в точках A, B, C, D — шарнирные, сила
и груз Р находятся в вертикальной плоскости OAD. углы показаны на рисунке.
Решение. Объект равновесия выберем узел А. На него действуют заданные силы и
Мысленно освободим узел А от связей. Реакции идеальных жестких стержней
и
направлены по осям стержней.
На узел А действует пространственная система сходящихся сил. Выберем систему координат с началом в точке О и запишем уравнение равновесия (2.10):
Решим полученную систему уравнений и определим неизвестные величины усилий в стержнях:
Полученные результаты свидетельствуют о том, что стержни АВ и АС работают на растяжение, а стержень АD — на сжатие.
Система сходящихся сил и решение задач
Система сходящихся сил — это такая система сил, действующих на абсолютно твёрдое тело, в которой линии действия всех сил пересекаются в одной точке. Такая система сил является на плоскости статически определимой, если число неизвестных сил в ней не больше двух.
Условия равновесия системы совпадающих сил
Совпадающими называются силы, линии действия которых
пересекаются в одной точке.
Если все силы по линиям их действия перенести в эту точку, то получим эквивалентную систему сил, которая приложена к одной точке. Равнодействующая системы прилагаемых к одной точки сил, приложенная к той же точке и изображается замыкающим вектором силового многоугольника, который построен на прибавляемых силах. Равнодействующая
равняется векторной сумме прибавляемых сил:
Поскольку система смежных сил может быть заменена одной силой (равнодействующей), то необходимым и достаточным условием равновесия тела под действием системы совпадающих сил является равенство нуля этого равнодействующего:
Геометрически это уравнение означает, что в построенном многоугольнике конец последнего вектора совпадает с началом первого, то есть многоугольник представляет
собой замкнутую фигуру.
В случае, когда на тело действуют три уравновешенные совпадающие силы, силовой (векторный) многоугольник сводится к силовому треугольнику. Решение задачи на равновесие в этом случае сводится к нахождению сторон треугольника с помощью тригонометрических формул.
Теорема о трех непараллельных силах. Если тело находится в равновесии под действием трех непараллельных сил, то линии действия этих сил обязательно пересекаются в одной точке и лежат в одной плоскости, то есть силы образуют плоскую систему совпадающих сил.
Теорема о трех силах облегчает решение задачи на равновесие твердого тела в том случае, когда направление одной из сил неизвестно. Найдя точку пересечения линий действий двух сил, направления которых известны, можно определить направление линии действия третьей силы, поскольку она должна проходить через точку приложения этой силы и точку пересечения линий действий первых двух сил.
Геометрический метод решения задач
Непосредственное использование сил многоугольника для решение задач статики сводится к геометрическому построению в масштабе векторного многоугольника с
дальнейшим определением неизвестных элементов с помощью тригонометрических формул. При решении задач на равновесие твердого тела геометрическим методом рекомендуется соблюдать следующий порядок:
1. Выделить объект равновесия;
2. Показать на чертежах точки примера и направления активных сил, действующих на объект равновесия;
3. Выяснить характер связей и возможные направления их реакций;
4. Построить замкнутый силовой многоугольник (построение надо начинать с силы, которая известна как по модулю, так и по направлению);
5. Из силового многоугольника найти неизвестные величины.
Аналитический метод решения задач
Аналитический метод решения задачи рекомендуется использовать в тех случаях, когда требуется определить скорости точек для большого числа положений плоской фигуры.
Проекция силы на ось и на плоскость
Общим способом определения модуля и направления равнодействующей является аналитический, который тоже следует из условия (C2.1) и базируется на аналитическом методе обозначения силы.
Аналитический метод обозначения силы заключается в том, что, выбрав некоторую прямоугольную систему координат (рис.C2.1), силу
раскладывают по правилу параллелепипеда на три составляющие,
Алгебраические значения длин направленных отрезков и
называются
проекциями силы на оси и
и обозначаются
и
Если и
— единичные векторы, которые направленны по осями
и
соответственно, а
и
— проекции силы на эти оси, то
Модуль и направление силы по известным проекциям на
три взаимно перпендикулярные оси и
можно получить из формул:
При определении проекции силы на ось возможны 4 случаи (рис.C2.2).
1. Вектор силы образует острый угол с положительным направлением координатной оси (черта С2.2, а). В этом случае проекция силы на ось
положительная и по модулю равна:
2. Вектор силы образует с положительным направлением оси тупой угол (рис.С2.2, б). В этом случае проекция силы на ось отрицательная и по модулю равна:
3. Вектор силы образует прямой угол с осью (рис.С2.2, в.). В этом случае проекция силы на ось равняется нулю:
4. Сила параллельна к координатной оси. В этом случая сила проецируется на ось в натуральную величину со знаком плюс, когда ее направление совпадает с положительным направлением оси (рис.С2.2, г), и со знаком минус в противоположном случае (рис.С2.2, д):
В некоторых случаях для нахождения проекции силы на ось удобнее сначала найти ее проекцию на плоскость, в которой лежит эта ось, а уже затем спроектировать найденную проекцию на нужную ось.
Например, в случае, что изображен на рис. 2.3, сначала лучше спроектировать
силу на плоскость
и получить проекцию
а уже затем найти проекции силы на оси
и
и
Тогда:
Аналитические условия равновесия системы совпадающих сил
Пусть силы образуют систему совпадающих сил, тогда равнодействующая
равна их геометрической сумме и тогда по теореме о проекции равнодействующей на оси системы координат:
Если тело под действием заданной системы сил находится в равновесии, то итак
или с учетом (С2.7) получаем следующие условия равновесия тела под действием системы совпадающих сил:
Таким образом, для равновесия пространственной системы совпадающих сил необходимо и достаточно, чтобы сумма проекций этих сил на каждую из трех
координатных осей равнялась нулю.
При решении задачи аналитическим способом до трех первых пунктов, приведенных в разделе С2.2, надо добавить следующие:
4. Выбрать декартовую систему координат
5. Составить уравнение равновесия твердого тела в проекциях на оси координат;
6. Решить полученную систему уравнений равновесия и найти неизвестные величины.
Образец выполнения и решения задач на темы С2
Задача 1
Задано:
Определить: натяжение нити ВС; реакцию
стержня АВ.
Решение.
Центр шарнира точка В находится в равновесии под действием сил натяжения нитей
, и реакции невесомого стержня
Причем
по модулю равняется
(п. С1.4, задача 1).
Таким образом, точка В находится в равновесии под действием трех сил, лежащих в одной плоскости и линии действия которых пересекаются в одной точке.
Величину и направление реакции и величину натяжения нити
определим геометрически, воспользовавшись условием равновесия системы смежных сил в векторной форме:
Для решения уравнения (1) построим силовой (векторный) треугольник (рис.2).
Для этого из произвольной точки Р (полюса) отложим вектор величина которого
нам известна. Поскольку векторный треугольник должен быть замкнутым, то с начала этого вектора проведем направление а с конца — направление
до взаимного пересечения (точка С).
Векторы и
направим таким образом, чтобы векторный треугольник был замкнутым.
Определив углы треугольника, можно записать теорему синусов:
Отсюда получим:
Ответ:
Задача 2
Задано:
Определить: натяжение нити и реакции
и
стержней AD и BD.
Решение. Шарнир D находится в равновесии под действием силы тяжести натяжения нити
реакций
и
невесомых стержней АD и BD (п.С1.4, задача 2).
Реакции и
направим вдоль стержней от D, примем, что стержни растянуты.
Все силы приложены к одной точке D и для определение неизвестных реакций можно воспользоваться аналитическими условиями равновесия системы совпадающих сил.
С точкой О свяжем пространственную систему координат, направив ось перпендикулярно плоскости АВС, а оси и
расположим в этой плоскости.
Спроектировав все силы на оси выбранной системы координат, достанем:
Из уравнения (1) находим:
Выразим из уравнения (2) натяжение нити и подставим в уравнение (3):
Откуда:
Если при решении задачи какая-то из реакций приобретает отрицательное значение, то это означает, что направление этой реакции надо изменить на противоположное. Тогда, действительное направление реакций и
невесомых стержней DA и DB противоположно изображенным на рисунке, а сами стержни будут не растянутыми, как указывалось в начале, а сжатыми.
Ответ:
Система сходящихся сил на плоскости
Система сходящихся сил на плоскости — это такая система сил, действующих на абсолютно твёрдое тело, в которой линии действия всех сил пересекаются в одной точке. Такая система сил является на плоскости статически определимой, если число неизвестных сил в ней не больше двух.
Геометрическое условие равновесия системы сходящихся сил
Сходящимися называются силы, линии действия которых пересекаются в одной точке (рис.2.1, а).
Если перенести все силы вдоль линии их действия в эту точку, получим эквивалентную систему сил, приложенных к одной точке.
Равнодействующая данной системы сил, которые проходят через точку
, приложена к этой же точке и изображается замыкающей стороной силового многоугольника, который построен (рис.2.1, б)
на прилагаемых силах, то есть равнодействующая равна векторной сумме прилагаемых сил:
Поскольку система сходящихся сил может быть заменена одной силой — равнодействующей, то необходимым и достаточным условием равновесия тела под действием системы сходящих сил является равенство нулю этой равнодействующей:
Геометрически это условие состоит в том, чтобы конец последнего вектора совпадал с началом первого в векторном (силовом) многоугольнике, построенном из сил системы, то есть силы должны образовывать замкнутый многоугольник.
Если тело находится в равновесии под действием трех сходящихся сил, то силовой многоугольник сводится к силовому треугольнику. Решения же задачи о равновесии в этом случае требует нахождения неизвестных элементов треугольника с помощью тригонометрических формул или измерений.
При решении задач на равновесие тела под действием трех сил часто приходится пользоваться теоремой о трех силах:
Если тело находится в равновесии под действием трех непараллельных сил, лежащих в одной плоскости, то линии действия этих сил обязательно пересекаются в одной точке, то есть силы образуют сходящуюся систему сил.
Теорема о трех непараллельных силах облегчает решение задач на равновесие твердого тела в тех случаях, когда направление одной из трех сил неизвестное. Определив точку пересечения линий действия двух сил, направление которых известно, можно указать направление линии действия третьей силы, поскольку она должна пройти через точку приложения этой силы и точку пересечения линий действия первых двух сил.
Геометрический метод решения задач
Непосредственное использование многоугольника сил при решение задач статики приводит к геометрическим построениям с последующим определением неизвестных элементов с помощью, например, формул тригонометрии.
При решении задач на равновесие твердого тела геометрическим методом рекомендуется придерживаться следующего порядка:
- Выделить объект, который будет рассматриваться в равновесии.
- Установить и показать на схеме активные силы, действующие на тело.
- Выяснить характер связей и установить направления их реакций.
- Построить замкнутый силовой многоугольник (построение надо начинать с сил, известных по модулю и по направлению).
- Из силового многоугольника определить неизвестные силы.
Аналитические условия равновесия системы сходящихся сил
Наиболее общим способом определения модуля и направления равнодействующей является аналитический, который базируется на аналитическом определении силы.
Если выбрать некоторую прямоугольную систему координатных осей (рис.2.2.), то силу
по правилу параллелограмма (в данном случае — прямоугольника) можно разложить на две составляющие
и
.
Алгебраические значения длин направленных отрезков и
называются проекциями силы на оси
и
и обозначаются
и
.
Если и
единичные векторы, что направлены по осям
и
, а
Модуль и направление силы по известным проекциям на взаимно перпендикулярные оси ,
находят из следующих формул:
При определении проекции силы на ось возможны следующие случаи (рис.2.3):
Рис. 2.3
1. Сила образует острый угол с положительным направлением оси (рис.2.3, а). В этом случае проекция силы на ось имеет положительный знак и по модулю равна
2. Сила образует с положительным направлением оси тупой угол (рис.2.3, б). В этом случае ее проекция на координатную ось имеет отрицательный знак и равна
3. Сила образует прямой угол с координатной осью (рис.2.3, в). В этом случае проекция силы на ось равна нулю:
4. Сила параллельна координатной оси (рис.2.3, г, д). В этом случае сила проецируется в натуральную величину и проекция положительна, если ее направление совпадает с положительным направлением оси (рис.2.3, г), и отрицательная, если направление силы совпадает с отрицательным направлением оси (рис.2.3, д).
Если силы представляют собой систему сходящихся сил, то равнодействующая
равна их геометрической сумме, а ее проекции на оси:
Поскольку модуль равнодействующей определяется по формуле
то тело под действием системы сходящихся сил будет находиться в равновесии, когда , а это возможно, когда
и
. В результате получим следующие аналитические условия равновесия тела под действием системы сходящихся сил:
Таким образом, для равновесия плоской системы сходящихся сил необходимо и достаточно, чтобы суммы проекций всех этих сил на каждую из координатных осей равнялись нулю.
При решении задач аналитическим способом нужно выполнить три первых пункта, указанные в параграфе 2.2, а затем следующие:
4. Выбрать декартову систему координат .
5. Составить уравнения равновесия твердого тела в проекциях на эти оси координат.
6. Решить систему составленных уравнений и определить неизвестные величины.
Примеры решения задач на тему: Система сходящихся сил
Задача № 1
Идеальный стержень удерживается в равновесии нерастяжимой нитью
. К шарниру
стержня на нити подвешено тело весом
(рис.2.4).
Определить натяжение нити и реакцию стержня
, если
Решение. Рассмотрим равновесие узла (рис.2.4). К узлу
приложена сила
, которая перенесена вдоль линии действия от центра масс тела к точке
, натяжение нити
и реакция стержня
. Таким образом, узел
находится в равновесии под действием трех сил
,
и
, которые лежат в одной плоскости и имеют одну и ту же точку пересечения.
Величину и направление усилия и величину натяжения нити
определим геометрическим методом, воспользовавшись геометрическим условием равновесия плоской системы сходящихся сил. Запишем геометрическое условие равновесия системы действующих сил на точку
:
Согласно записанному векторному уравнению построим силовой треугольник.
Для этого с произвольной точки (рис. 2.5) отложим в некотором масштабе вектор
. С точки
начала вектора
проведем прямую, параллельную линии действия реакции
, а с точки
конца вектора
— прямую, параллельную линии действия реакции
. Проведенные прямые пересекутся в точке
, образовав треугольник
. Укажем направление сил, руководствуясь тем, что при добавлении векторов начало каждого следующего вектора должно исходить из конца предыдущего.
Найти неизвестные величины можно или померив соответствующие стороны силового треугольника, или, по известным углам треугольника из теоремы синусов:
Откуда:
Ответ:
Задача № 2
Нить с двумя телами на концах и
перекинута через блоки
и
(рис.2.6). В точке
к нити, находящейся между блоками, прикрепил груз
При равновесии системы нить
образовала с горизонталью угол
, а нить
.
Определить вес тел и
. Силами трения в блоках пренебречь.
Решение. Сначала выясним, равновесие какого объекта надо рассмотреть при решении задачи. По условию задачи нужно определить вес тела и вес тела
, которые приложены к центрам масс тел и направлены вертикально вниз. Каждое тело натягивает нить с силой, равной его весу. Блок меняет направление нити, а соответственно, и направление силы натяжения нити. Силы
и
по модулю, равны
и
, но направлены вдоль
и
.
Поскольку прямые и
пересекаются в точке
, к которой можно приложить и заданную силу
, то при решении задачи надо рассматривать равновесие точки
.
Таким образом, на объект равновесия, точку (рис.2.6), действуют силы натяжения
ветки нити
; натяжения
ветки нити
; весы тела
. (Вес тел
и
учитывать не надо, поскольку они приложены не к объекту равновесия точки
).
Составим уравнение равновесия. Для этого, выберем систему координат с началом в точке
, спроецируем силы на оси и составим уравнение равновесия.
Для проекций на ось достанем:
Знак проекции — плюс, поскольку она направлена по положительному направлению оси
. Знак проекции
— минус, поскольку она направлена по отрицательному направлению оси
. Проекция силы
на ось
равна нулю.
Сумма проекций всех сил на ось равна:
Проекции сил и
имеют знак плюс, поскольку направлены по положительному направлению оси
. Проекция силы
имеет знак минус, поскольку направлена по отрицательному направлению оси.
С учетом численных значений тригонометрических функций и величины , уравнения примут вид:
Найдя из первого уравнения:
и подставив во второе, получим:
Ответ:
Задача № 3
Однородный стержень (рис.2.7), что прикреплено к вертикальной стенке с помощью шарнира
, удерживается под углом
к вертикали с помощью троса
, который образует угол
со стержнем.
Определить величину и направление реакции петли, если вес стержня
Решение. Задачу решим геометрическим и аналитическим способами, используя теорему о равновесии тела под действием 3-х сил.
Рассмотрим равновесие стержня . На стержень действует активная сила — сила тяжести
и реакции связей: натяжение троса
; реакция цилиндрического шарнира
.
Направление натяжения троса известное — реакция направлена вдоль троса к точке
. Направление реакции шарнира
предварительно указать нельзя. Для определения направления реакции
воспользуемся теоремой о трех силах, так как стержень находится в равновесии под действием трех сил
,
и
.
Найдем точку пересечения линий действия силы тяжести и натяжение троса
— это точка
. Согласно теореме о трех силах, линия действия реакции
тоже должна пройти через эту точку.
На рис.2.7 равнобедренный (углы при вершинах
и
равны
). Поскольку линия действия (
) силы тяжести
проходит через середину стержня
и представляет собой среднюю линию
, то точка
делит сторону
пополам.
Соответственно, отрезок является одновременно высотой, медианой и биссектрисой треугольника
.
Таким образом
После определения направления реакции , можно переходить к вычислению величин реакций.
Запишем геометрическое условие равновесия системы сил, действующих на стержень :
Согласно записанному векторному уравнению построим замкнутый силовой треугольник (рис.2.8).
Для этого из произвольной точки в некотором масштабе проводим вектор силы тяжести
. Через точку
проводим прямую, параллельную линии действия реакции
, а через точку
конца вектора
проводим прямую, параллельную линии действия натяжения
.
Проведенные прямые пересекаются в точке , образовав силовой треугольник
. Поскольку
(рис. 2.7) и
. ( рис. 2.8) подобные, то
Из силового треугольника находим:
Решим задачу аналитическим способом. Для этого выберем прямоугольную систему координат (рис.2.7) и составим уравнение равновесия в проекциях на оси:
Из первого уравнения выразим и подставим во второе уравнение:
Отсюда получим:
Ответ:
Балка (рис.2.9) закреплена шарнирно-неподвижной опорой в точке
и шарнирно-подвижной в точке
. К середине балки под углом
приложена сила
Определить реакции опор и
для двух случаев наклона подвижной опоры (рис.2.9, а и 2.9, б). Весом балки пренебречь.
Решение. Рассмотрим равновесие балки , изображенной на рис.2.9,а. На балку действует активная сила
и реакции опор
и
(рис. 2.10). Опора
шарнирно-подвижная, ее реакция направлена перпендикулярно опорной поверхности. Поскольку, в данном случае опорная поверхность параллельна оси балки, то реакция
перпендикулярна
. Опора
шарнирно-неподвижная и направление ее реакции предварительно указать нельзя.
Для определения направления реакции (угла
) воспользуемся теоремой о трех силах. Линии действия силы
и реакции
пересекаются в точке
. Таким образом, линия действия
тоже должна пройти через точку
.
С рис.2.10 видно, что — равнобедренный и прямоугольный, то есть
. Откуда:
Теперь перейдем к определению величин реакций опор.
Составим уравнение равновесия сил в проекциях на оси выбранной системы координат :
С учетом числовых значений:
В результате получим:
Ответ:
Перейдем к определению реакций опор балки , что изображена на рис.2.9,б.
В этом случае, реакция составляет с осью балки
угол
. Линия действия реакции
(рис.2.11) проходит через точку
, в которой пересекаются линии действия силы
и реакции
.
Определим угол между реакцией
и осью балки
:
Составим уравнение равновесия для системы сил, действующей на балку:
С учетом числовых данных:
Добавив уравнение получим:
Подставив значение в первое уравнение, найдем
:
Ответ:
Услуги по теоретической механике:
- Заказать теоретическую механику
- Помощь по теоретической механике
- Заказать контрольную работу по теоретической механике
Учебные лекции:
- Статика
- Момент силы
- Пара сил
- Произвольная система сил
- Плоская произвольная система сил
- Трение
- Расчет ферм
- Расчет усилий в стержнях фермы
- Пространственная система сил
- Произвольная пространственная система сил
- Плоская система сходящихся сил
- Пространственная система сходящихся сил
- Равновесие тела под действием пространственной системы сил
- Естественный способ задания движения точки
- Центр параллельных сил
- Параллельные силы
- Система произвольно расположенных сил
- Сосредоточенные силы и распределенные нагрузки
- Кинематика
- Кинематика твердого тела
- Движения твердого тела
- Динамика материальной точки
- Динамика механической системы
- Динамика плоского движения твердого тела
- Динамика относительного движения материальной точки
- Динамика твердого тела
- Кинематика простейших движений твердого тела
- Общее уравнение динамики
- Работа и мощность силы
- Обратная задача динамики
- Поступательное и вращательное движение твердого тела
- Плоскопараллельное (плоское) движение твёрдого тела
- Сферическое движение твёрдого тела
- Движение свободного твердого тела
- Сложное движение твердого тела
- Сложное движение точки
- Плоское движение тела
- Статика твердого тела
- Равновесие составной конструкции
- Равновесие с учетом сил трения
- Центр масс
- Колебания материальной точки
- Относительное движение материальной точки
- Статические инварианты
- Дифференциальные уравнения движения точки под действием центральной силы и их анализ
- Динамика системы материальных точек
- Общие теоремы динамики
- Теорема об изменении кинетической энергии
- Теорема о конечном перемещении плоской фигуры
- Потенциальное силовое поле
- Метод кинетостатики
- Вращения твердого тела вокруг неподвижной точки