Информация
Расчёт прогиба и прочности железобетонной балки онлайн сложно выполнить самостоятельно без специальных знаний. Применение балок в строительстве и ремонте – повсеместное, поэтому задача носит универсальный характер. Требуется надёжное решение.
Наш онлайн-сервис поможет справиться с этим за секунды.
Особенности расчёта железобетонной балки
- арматура задаётся как снизу, так и сверху;
- при схеме со свободным концом арматура будет располагаться сверху – в растягиваемом слое;
- методика расчёта – по «СНБ 5.03.01-02 Бетонные и железобетонные конструкции».
Результаты имеют уровень справочного типа, а не проектных изысканий.
Порядок расчёта
- Задание размеров балки.
Данный расчёт железобетонной балки выполняется для наиболее часто применяемого поперечного сечения – прямоугольного. Актуальность этой формы подчёркивается практичностью: в домашних или «полевых» условиях такая балка оперативно изготавливается без сложных форм.
Требуется указать в миллиметрах ширину «t» и высоту «h» — не наоборот: деформации балка наиболее качественно противостоит именно при таком соотношении.
Длина балки — не общее значение, а расстояние между внутренними крайними точками контакта с опорами балки.
- Выбор класса бетона.
Параметр указывает на прочность конструкции – он напрямую зависит от марки применяемого бетона и соотношения количеств песка и цемента.
Чем выше число, тем прочнее будет бетон.
- Выбор класса арматуры.
Наш онлайн-калькулятор железобетонной балки учитывает основные типы арматуры – периодического поперечного сечения и гладкого.
Прочностные характеристики арматуры описываются классом и маркой:
- буква «А» или «В» обозначает технологию производства (арматура горячекатаная или прошедшая холодную деформацию соответственно);
- цифра после неё – уровень предела текучести стали.
Эти сведения находятся в сертификате на арматуру.
- Определение схемы нагрузки.
Условия работы деформируемого стержня – ключевой фактор для расчёта: от этого зависит порядок и точность результата.
Действие нагрузки разнится для шарнирно закрепленных концов и жёстко заделанного. Наш онлайн-расчёт железобетонной балки рассчитан на эти варианты: выбирайте между шарнирным опиранием и заделкой одного конца.
- Задание нагрузки.
Типовой случай нагружения – распределённая нагрузка (килограммов на погонный метр). Если точно определить значение не представляется возможным, есть стандартная величина для междуэтажного перекрытия: 200 кг/м.
- Количество слоёв армирования.
Параметр отражает мощность балки – чем больше продольной арматуры заложено, тем более сильному изгибу будет противостоять изделие.
- Параметры нижнего, наиболее нагруженного, слоя балки.
Условия эксплуатации железобетонной балки носят определяющий характер, в частности — уровни влажности и защищенности от атмосферы.
Выбор предлагается сделать с учётом имеющихся данных.
- Параметры армирования верхнего слоя.
Если планируется выполнить изделие по особым требованиям, раздел поможет уточнить сжимаемый слой балки. Наш ресурс имеет такую возможность – железобетонная балка будет рассчитана под самые значительные нагрузки.
Обычно в инженерной
практике проверку прочности балок
производят по нормальным наибольшим и
касательным напряжениям [2]. Нормальные
напряжения σ зависят от величины
изгибавшего момента, а касательные
τ – от величины поперечной силы.
Касательные напряжения в сечениях балки
обычно не играют существенной роли,
поэтому размеры сечения балок определяют
из условия прочности по нормальным
максимальным напряжениям:
,
где Мmax
–
наибольший (по абсолютной величине)
изгибающий момент, известный из эпюры
изгибающих моментов ().
Сечение балки
подбирается по моменту сопротивления
относительно нейтральной оси:
.
(3.10)
Для балки
прямоугольного сечения
.
Числовые значения
моментов сопротивления стандартных
профилей проката указаны в соответствующих
государственных стандартах на прокат,
а на балки двутавровые приведены в
таблицах приложения Г. Следует подбирать
номер профиля, имеющий большее стандартное
ближайшее значение. Допустимо принимать
и меньшее ближайшее значение WхСТ,
однако оно должно удовлетворять условию:
.
Момент сопротивления
при изгибе
Подходит швеллер
№ 8 (Wx=22,4
см3,
площадь сечения А=8,98 см2).
Определим
прямоугольное сечение (рисунок 3.10) при
Рисунок 3.10 –
Сечение швеллера и прямоугольное сечение
Площадь
прямоугольного сечения
A=bh=16,27
см2
≈
в 2 раза больше площади швеллера.
3.4 Совместное действие изгиба и кручения
Сочетание деформаций
изгиба и кручения испытывает большинство
валов, которые обычно представляют
собой прямые брусья круглого или
кольцевого сечения.
Возникающие от
изгиба нормальные напряжения достигают
максимального значения в волокнах,
наиболее удаленных от нейтральной оси:
,
где М — максимальный
изгибающий момент, Нм;
W
— осевой момент сопротивления сечения,
м3.
Для вала круглого
сечения
Максимальные
касательные напряжения при кручении
возникают в точках контура поперечного
сечения:
где Wp
— полярный момент сопротивления сечения
(Wp=2W),
м3;
Т
– крутящий момент, Нм.
Таким образом, при
сочетании изгиба и кручения опасными
будут точки (для конкретного поперечного
сечения), наиболее удаленные от нейтральной
оси.
Применив третью
теорию прочности, получим
.
Расчетная формула
для круглых валов принимает вид:
,
где М
экв.
– эквивалентный момент, Нм;
[σ]
– допускаемое
напряжение на растяжение для материала
вала, Па.
Если величина и
направление нагрузки во время работы
вращающегося вала остаются неизменными,
то напряжения изгиба в теле вала будут
изменяться во времени по симметричному
циклу – I циклу
нагружения (рисунок 3.11).
Рисунок 3.11 – График
изменения во времени напряжения изгиба
I
цикл
При действии на
вал нагрузок в разных плоскостях силы
раскладывают на две взаимно перпендикулярные
плоскости, за одну из которых выбирают
плоскость действия одной из сил.
Суммарный изгибающий
момент определится как геометрическая
сумма моментов, действующих во взаимно
перпендикулярных плоскостях
рассматриваемого сечения:
где Мiв
и Мiгор
– изгибающие
моменты в i
– м сечении,
действующие в вертикальной и в
горизонтальной плоскостях соответственно.
Эквивалентный
момент определится по формуле:
,
Диаметр вала в
опасном сечении
рассчитывается из условия прочности:
.
Примечание —
При решении задач все необходимые
вычисления следует сначала проделать
в общем виде, обозначая все данные и
искомые величины буквами, после чего
вместо буквенных обозначений подставить
их числовые значения и найти результат.
На расчетных эскизах размеры должны
быть проставлены теми же буквами, какие
имеются в расчетных формулах.
Пример 4.
Построить
эпюры изгибающих, крутящего, суммарного
изгибающего моментов и определить
диаметр вала (рисунок 3.12) в опасном
сечении.
Т = 0,2 кНм, F
= 2 кН, q
= 4 кН/м, a
= 0,2м, b
=1,2а = 0,24м,
с = 0,8а = 0,16м, [σ]
= 110МПа.
Решение:
Плоскость yz:
Плоскость хz:
Из условия прочности
наиболее нагруженного сечения А определим
диаметр вала.
Рисунок 3.12 —
Расчетная
схема и эпюры вала
ПРИЛОЖЕНИЕ А
ЗАДАЧА 1
Расчет бруса на
осевое растяжение (сжатие)
Сечение бруса
квадратное. Материал – сталь. Допускаемое
напряжение [σ]
= 100 МПа. Модуль продольной упругости Е
= 2·105
МПа. Исходные данные к расчету см. в
таблице + рисунок.
ИСХОДНЫЕ ДАННЫЕ
Вариант |
F1 |
F2 |
F3 |
l1 |
l2 |
l3 |
кН |
м |
|||||
1 |
32 |
18 |
24 |
0,7 |
0,4 |
0,8 |
2 |
28 |
16 |
12 |
0,6 |
0,5 |
0,7 |
3 |
22 |
8 |
26 |
0,5 |
0,6 |
0,9 |
4 |
19 |
24 |
15 |
0,8 |
0,6 |
0,5 |
5 |
30 |
12 |
16 |
0,4 |
0,9 |
0,6 |
6 |
27 |
15 |
10 |
0,6 |
0,7 |
0,8 |
7 |
24 |
14 |
8 |
0,3 |
0,8 |
0,7 |
8 |
26 |
16 |
11 |
0,7 |
0,9 |
0,4 |
9 |
25 |
12 |
18 |
0,5 |
0,5 |
0,9 |
10 |
31 |
26 |
14 |
0,7 |
0,3 |
0,5 |
11 |
18 |
15 |
12 |
0,6 |
0,6 |
0,8 |
12 |
23 |
25 |
12 |
0,8 |
0,4 |
0,7 |
13 |
16 |
8 |
12 |
0,4 |
0,7 |
0,9 |
14 |
18 |
10 |
14 |
0,6 |
0,5 |
0,8 |
15 |
22 |
12 |
14 |
0,5 |
0,6 |
0,7 |
16 |
20 |
9 |
12 |
0,7 |
0,4 |
0,8 |
17 |
24 |
16 |
12 |
0,9 |
0,3 |
0,6 |
18 |
18 |
10 |
14 |
0,8 |
0,2 |
0,7 |
19 |
25 |
18 |
14 |
0,7 |
0,6 |
0,9 |
20 |
19 |
11 |
10 |
0,8 |
0,5 |
0,6 |
21 |
30 |
13 |
10 |
0,4 |
0,8 |
0,5 |
22 |
27 |
15 |
12 |
0,6 |
0,9 |
0,4 |
23 |
22 |
11 |
10 |
0,7 |
0,7 |
0,6 |
24 |
20 |
9 |
10 |
0,5 |
0,9 |
0,7 |
25 |
24 |
12 |
14 |
0,7 |
0,4 |
0,9 |
26 |
19 |
10 |
11 |
0,8 |
0,3 |
0,6 |
27 |
25 |
13 |
13 |
0,4 |
0,7 |
0,8 |
28 |
21 |
16 |
12 |
0,5 |
0,5 |
0,7 |
29 |
22 |
20 |
10 |
0,8 |
0,6 |
0,8 |
30 |
23 |
15 |
11 |
0,7 |
0,3 |
0,9 |
Расчетные схемы
ПРИЛОЖЕНИЕ Б
ЗАДАЧА 2 РАСЧЕТ
ВАЛА НА КРУЧЕНИЕ
Сечение вала
круглое, сплошное и кольцевое. Допускаемое
напряжение кручения [τ]=25
МПа. Модуль сдвига G=8∙104
МПа
Вариант |
Т1, |
Т2, |
Т3, |
Т4, |
l1, |
l2, |
l3, |
l4, |
l5, |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1 |
200 |
300 |
400 |
0,8 |
0,7 |
0,4 |
0,6 |
0,3 |
|
2 |
300 |
500 |
500 |
0,7 |
0,6 |
0,5 |
0,8 |
0,4 |
|
3 |
400 |
400 |
300 |
0,9 |
0,5 |
0,6 |
0,3 |
0,2 |
|
4 |
100 |
200 |
300 |
0,5 |
0,8 |
0,9 |
0,4 |
0,3 |
|
5 |
300 |
400 |
100 |
0,6 |
0,4 |
0,6 |
0,5 |
0,4 |
|
6 |
100 |
100 |
500 |
0,8 |
0,6 |
0,7 |
0,3 |
0,2 |
|
7 |
300 |
200 |
200 |
0,7 |
0,3 |
0,8 |
0,4 |
0,3 |
|
8 |
500 |
600 |
500 |
0,4 |
0,7 |
0,9 |
0,5 |
0,4 |
|
9 |
600 |
800 |
700 |
0,9 |
0,5 |
0,5 |
0,3 |
0,2 |
|
10 |
400 |
200 |
300 |
0,5 |
0,7 |
0,8 |
0,2 |
0,3 |
|
11 |
300 |
500 |
600 |
0,8 |
0,6 |
0,6 |
0,4 |
0,3 |
|
12 |
100 |
200 |
200 |
0,7 |
0,8 |
0,4 |
0,3 |
0,4 |
|
13 |
700 |
500 |
200 |
0,9 |
0,4 |
0,7 |
0,2 |
0,3 |
|
14 |
800 |
400 |
300 |
0,8 |
0,6 |
0,5 |
0,3 |
0,3 |
|
15 |
900 |
600 |
400 |
0,7 |
0,5 |
0,6 |
0,4 |
0,4 |
|
16 |
100 |
200 |
300 |
0,8 |
0,7 |
0,4 |
0,2 |
0,5 |
|
17 |
200 |
800 |
100 |
0,6 |
0,9 |
0,3 |
0,3 |
0,6 |
|
18 |
300 |
800 |
100 |
0,7 |
0,8 |
0,2 |
0,4 |
0,7 |
|
19 |
400 |
500 |
300 |
200 |
0,9 |
0,7 |
0,6 |
0,2 |
|
20 |
500 |
500 |
200 |
300 |
0,6 |
0,8 |
0,5 |
0,3 |
|
21 |
600 |
900 |
400 |
100 |
0,5 |
0,4 |
0,8 |
0,4 |
|
22 |
700 |
800 |
300 |
200 |
0,4 |
0,6 |
0,9 |
0,2 |
|
23 |
800 |
700 |
100 |
400 |
0,6 |
0,7 |
0,7 |
0,3 |
|
24 |
900 |
600 |
200 |
300 |
0,7 |
0,5 |
0,9 |
0,4 |
|
25 |
100 |
500 |
300 |
200 |
0,9 |
0,7 |
0,4 |
0,2 |
|
26 |
200 |
300 |
500 |
300 |
0,6 |
0,8 |
0,3 |
0,4 |
|
27 |
300 |
300 |
400 |
200 |
0,8 |
0,4 |
0,7 |
0,3 |
|
28 |
400 |
200 |
600 |
100 |
0,7 |
0,5 |
0,5 |
0,2 |
|
29 |
500 |
100 |
700 |
200 |
0,8 |
0,8 |
0,6 |
0,3 |
|
30 |
600 |
200 |
800 |
300 |
0,9 |
0,7 |
0,3 |
0,4 |
Расчетные схемы
ПРИЛОЖЕНИЕ В
ЗАДАЧА 3
РАСЧЕТ НА ПРОЧНОСТЬ ДВУХОПОРНОЙ БАЛКИ
ПРИ ИЗГИБЕ
Для данной балки подобрать сечения
двутавра и прямоугольника (h/b=2).
Допускаемое напряжения изгиба [σ]=160
МПа
Вариант |
М,K |
F, |
q, |
l1, |
l2, |
l3, |
l4, |
l5, |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
1 |
18 |
26 |
14 |
2 |
2 |
5 |
1 |
1 |
2 |
24 |
18 |
10 |
2 |
3 |
2 |
3 |
2 |
3 |
16 |
34 |
12 |
2 |
3 |
3 |
2 |
2 |
4 |
30 |
24 |
16 |
2 |
4 |
4 |
1 |
2 |
5 |
20 |
12 |
8 |
1,8 |
2,2 |
1 |
5 |
1 |
6 |
22 |
16 |
10 |
1,6 |
1 |
1,4 |
6 |
2 |
7 |
18 |
22 |
14 |
2,2 |
2 |
1,8 |
5 |
1 |
8 |
16 |
24 |
12 |
2,5 |
1 |
1,5 |
5 |
2 |
9 |
16 |
24 |
12 |
2,5 |
1 |
1,5 |
5 |
2 |
10 |
14 |
15 |
8 |
1,6 |
2 |
1,4 |
4 |
3 |
11 |
10 |
23 |
12 |
2 |
2 |
2 |
4 |
2 |
12 |
18 |
17 |
10 |
1,8 |
3 |
1,2 |
5 |
1 |
13 |
16 |
25 |
15 |
2 |
2 |
4 |
2 |
2 |
14 |
24 |
16 |
10 |
2 |
3 |
4 |
2 |
1 |
15 |
1 |
22 |
12 |
1,6 |
2,4 |
3,5 |
2,5 |
2 |
16 |
20 |
18 |
14 |
1,8 |
2,2 |
4,5 |
2,5 |
2 |
17 |
22 |
24 |
8 |
2 |
2 |
4 |
3 |
1 |
18 |
16 |
26 |
6 |
2 |
2 |
3,5 |
3,5 |
1 |
19 |
18 |
20 |
10 |
1,5 |
2,5 |
4,2 |
1,8 |
8 |
20 |
28 |
18 |
16 |
1,8 |
2,2 |
4,5 |
2,5 |
3 |
21 |
17 |
25 |
12 |
2 |
2 |
1 |
5 |
2 |
22 |
15 |
30 |
10 |
1,5 |
2,5 |
2 |
4 |
1 |
23 |
26 |
22 |
8 |
2 |
2 |
2 |
3 |
2 |
24 |
30 |
18 |
14 |
1,6 |
3,0 |
2 |
4 |
1 |
25 |
24 |
26 |
15 |
1,5 |
2,5 |
6 |
1 |
1 |
26 |
22 |
13 |
2,5 |
1,5 |
5 |
2 |
2 |
|
27 |
20 |
12 |
2,0 |
1,5 |
5,5 |
3 |
2 |
|
28 |
18 |
28 |
10 |
2,0 |
1,5 |
4,5 |
2 |
2 |
29 |
30 |
20 |
8 |
1,8 |
3,2 |
1 |
2 |
1 |
30 |
28 |
18 |
15 |
2 |
2,5 |
1,5 |
5 |
2 |
Расчетные схемы
задачи 3
ПРИЛОЖЕНИЕ Г
Сталь прокатная
– балки двутавровые (ГОСТ 8239-83)
h
– высота профиля;
b
– ширина;
d
– толщина;
t
– средняя толщина;
R
и r
– внутренний и наружный радиусы
скруглений;
J
– момент инерции;
W
– момент сопротивления;
i
– радиус инерции;
S
– статический момент полусечения
Номер профиля |
Масса |
Размеры, |
Площадь сечения, |
Jx, см4 |
Wx, см3 |
ix, см |
Sx, см3 |
Jy, см4 |
Wy, см3 |
iy, см |
|||||
h |
b |
d |
t |
R |
r |
||||||||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
10 |
9,46 |
100 |
55 |
4,5 |
7,2 |
7 |
2,5 |
12 |
198 |
39,7 |
4,06 |
23 |
17,9 |
6,49 |
1,22 |
12 |
11,45 |
120 |
64 |
4,8 |
7,3 |
7,5 |
3 |
14,7 |
350 |
58,4 |
4,88 |
33,7 |
27,9 |
8,72 |
1,38 |
14 |
13,7 |
140 |
73 |
4,9 |
7,5 |
8 |
3 |
17,4 |
572 |
81,7 |
5,73 |
46,8 |
41,9 |
11,5 |
1,55 |
16 |
15,9 |
160 |
81 |
5,0 |
7,8 |
8,5 |
3,5 |
20,2 |
873 |
109,0 |
6,57 |
62,3 |
58,6 |
14,5 |
1,7 |
18 |
18,4 |
180 |
90 |
5,1 |
8,1 |
9,0 |
3,5 |
23,4 |
1290 |
143,0 |
7,42 |
81,4 |
82,6 |
18,4 |
1,88 |
18а |
19,9 |
180 |
100 |
5,1 |
8,3 |
9,0 |
3,5 |
25,4 |
1430 |
159,0 |
7,51 |
89,8 |
114,0 |
22,8 |
2,12 |
20 |
21,0 |
200 |
100 |
5,2 |
8,4 |
9,5 |
4,0 |
26,8 |
1840 |
184,0 |
8,28 |
104,0 |
115,0 |
23,1 |
2,07 |
20а |
22,7 |
200 |
110 |
5,2 |
8,6 |
9,5 |
4,0 |
28,9 |
2030 |
203,0 |
8,37 |
114,0 |
155,0 |
28,2 |
2,32 |
22 |
24,0 |
220 |
110 |
5,4 |
8,7 |
10,0 |
4,0 |
30,6 |
2550 |
232,0 |
9,13 |
131,0 |
157,0 |
28,6 |
2,27 |
22а |
25,8 |
220 |
120 |
5,4 |
8,9 |
10,0 |
4,0 |
32,6 |
2790 |
254,0 |
9,22 |
143,0 |
106,0 |
34,3 |
2,5 |
24 |
27,3 |
240 |
115 |
5,6 |
9,5 |
10,5 |
4,0 |
34,8 |
3460 |
289 |
9,97 |
163 |
198 |
34,5 |
2,37 |
24а |
29,4 |
240 |
125 |
5,6 |
9,8 |
20,5 |
4,0 |
37,5 |
3800 |
317 |
10,1 |
178 |
260 |
41,6 |
2,63 |
27 |
31,5 |
270 |
125 |
6,0 |
9,8 |
11,0 |
4,5 |
40,2 |
5010 |
371 |
11,2 |
210 |
260 |
41,5 |
2,54 |
27а |
33,9 |
270 |
135 |
6,0 |
10,2 |
11,0 |
4,5 |
43,2 |
5500 |
407 |
11,3 |
229 |
337 |
50,0 |
2,8 |
30 |
36,5 |
300 |
135 |
6,5 |
10,2 |
12,0 |
5 |
46,5 |
7080 |
472 |
12,3 |
268 |
337 |
49,9 |
2,69 |
30а |
39,2 |
300 |
145 |
6,5 |
10,7 |
12,0 |
5 |
49,9 |
7780 |
518 |
12,5 |
292 |
436 |
60,1 |
2,95 |
33 |
42,2 |
330 |
140 |
7,0 |
11,2 |
13,0 |
5 |
53,8 |
9840 |
597 |
13,5 |
339 |
419 |
59,1 |
3,79 |
36 |
48,6 |
360 |
145 |
7,5 |
12,3 |
14,0 |
6 |
61,9 |
13380 |
743 |
14,7 |
423 |
516 |
71,1 |
2,89 |
40 |
57,0 |
400 |
155 |
8,3 |
13,0 |
15,0 |
6 |
72,6 |
19062 |
953 |
16,2 |
545 |
667 |
86,1 |
3,08 |
45 |
66,5 |
450 |
160 |
9,0 |
14,2 |
16,0 |
7 |
84,7 |
27696 |
1231 |
18,1 |
708 |
808 |
101,0 |
3,09 |
50 |
78,5 |
500 |
170 |
10,0 |
15,2 |
17,0 |
7 |
100 |
39727 |
1589 |
19,9 |
919 |
1043 |
123,0 |
3,23 |
60 |
108,0 |
600 |
190 |
12,0 |
17,8 |
20,0 |
8 |
138 |
76806 |
2560 |
23,6 |
1491 |
1725 |
182,0 |
3,54 |
60б |
120,0 |
650 |
200 |
12,0 |
19,2 |
22,0 |
9 |
153 |
101400 |
3120 |
25,8 |
1800 |
2170 |
217,0 |
3,77 |
70 |
138,0 |
700 |
210 |
13,0 |
20,8 |
24,0 |
10 |
176 |
134600 |
3840 |
27,7 |
2230 |
2730 |
260,0 |
3,94 |
70а |
168,0 |
700 |
210 |
15,0 |
24,0 |
24,0 |
10 |
202 |
152700 |
4360 |
27,5 |
2550 |
3240 |
309,0 |
4,01 |
70б |
184,0 |
700 |
210 |
17,5 |
28,2 |
24,0 |
10 |
234 |
175770 |
5010 |
27,4 |
2940 |
3910 |
373,0 |
4,09 |
ПРИЛОЖЕНИЕ Д
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Для того чтобы начать расчет, выберите один из предложенных вариантов:
Балка – это элемент строительных несущих конструкций, который широко используется для возведения межэтажных перекрытий. Перекрытия, в свою очередь, предназначены для разделения по высоте смежных помещений, а также принятия статических и динамических нагрузок от находящихся на нем предметов интерьера, оборудования, людей и т.д.
В большинстве случаев, для частного домостроения используются деревянные балки из цельного бруса, отесанного бревна, клееных досок или шпона. Эти материалы, при правильном подборе параметров, способны обеспечить необходимую прочность и жесткость основания, что является залогом долговечности постройки.
Мы предлагаем вам выполнить онлайн расчет балки перекрытия на прочность и изгиб, подобрать её сечение и определить шаг между балками. Также вы получите набор персональных чертежей и 3D-модель для лучшего восприятия возводимой конструкции. Программа учитывает СНиП II-25-80 (СП 64.13330.2011) и другие справочные источники.
Точный и грамотный расчет деревянных балок в сервисе KALK.PRO, позволяет узнать все необходимые параметры для сооружения крепкого перекрытия. Все вычисления бесплатны, есть возможность сохранения рассчитанных данных в формате PDF, плюс доступны схемы и 3D-модель.
Содержание
- Инструкция к калькулятору
- Расчет балок перекрытия вручную
- Виды балок
- Подбор сечения балки
- Расчет балки – Пример
- Длина балки
- Определение расчетной нагрузки
- Максимальный изгибающий момент
- Требуемый момент сопротивления
- Момент сопротивления балки перекрытия
- Расчет балки на прочность
- Расчет балки на прогиб (изгиб)
- Конечные параметры балки
- Методика расчета балок перекрытия из клееного бруса и отесанного бревна
Инструкция к калькулятору
Наш сервис предоставляет на выбор два вида расчета однопролетных балок перекрытия. В первом случае, вам предлагается рассчитать сечение балки при известном шаге между ними, во втором случае, вы можете узнать рекомендуемое значение шага между балками при выбранных характеристиках сечения. Разберем работу калькулятора на примере, когда ваша задача заключается в нахождении сечения балки.
Для расчета вам понадобится знать ряд обязательных начальных параметров. В первую очередь это характеристики самой балки:
- ширина сечения (толщина), мм;
- длина пролета балки (на изображении BLN), м;
- вид древесины (сосна, ель, лиственница…);
- класс древесины (1/К26, 2/К24, 3/К16);
- пропитка (есть, нет).
В случае, если вы не знаете толщину предполагаемой балки, в первом блоке следует выбрать пункт «Известно соотношение высоты сечения балки к её ширине — h/b» и указать значение 1,4. Эта наиболее оптимальная величина, которая получена эмпирическим методом и указывается во многих справочниках.
Затем нужно указать условия, в которых будет эксплуатироваться перекрытие:
- температурный режим (< 35 °C .. > 50 °C);
- влажностный режим;
- присутствуют постоянные повышенные нагрузки или нет.
После этого, сконфигурируйте конструкцию и заполните поля калькулятора:
- длина стены дома по внутренней стороне, м;
- шаг между балками, см;
- полная длина балки (на изображении BFL), м;
- нагрузка на балку, кг/м2 ;
- предельный прогиб в долях пролета.
При необходимости впишите стоимость одного кубометра древесины, для того чтобы узнать общую стоимость всех пиломатериалов.
Также, обратим внимание, что обычно шаг балки не делают меньше 0,3 м, так как это нецелесообразно с экономической точки зрения и больше 1,2 м, так как возможен прогиб чернового пола со всеми вытекающими последствиями.
Когда вы нажмете кнопку «Рассчитать», сервис произведет расчет балки онлайн и выведет на экране рекомендуемые значения сечения подобранной балки.
Кроме того, в блоке «Результаты расчета» вы сможете узнать:
- параметры балки при расчете на прочность;
- параметры балки при расчете на прогиб;
- максимальный прогиб балки, см.
Квалифицированный расчет перекрытия по деревянным балкам — залог долговечности сооружения и безопасность для вашей семьи.
Расчет балок перекрытия
Самостоятельный расчет деревянной балки перекрытия – это долгое и нудное занятие, которое обязывает вас знать основы инженерных дисциплин и сопромата. Без определенных навыков и знаний, вручную подобрать материал, рассчитать необходимое сечение или шаг балки – не просто тяжело, а порой и невозможно. Тем не менее, мы попытаемся вам рассказать об основных характеристиках, которые нужны для вычислений и по какому алгоритму работает наш калькулятор.
Виды балок
В настоящее время, деревянные балки, используемые для изготовления перекрытий, можно разделить на два принципиально разных вида:
- цельные;
- клееные.
Исходя из названия становится понятно, что в первом случае, это будет цельный кусок древесины определенного типа сечения (чаще всего это брус на 2 или 4 канта), во втором случае, это клееная балка из досок или шпона LVL.
Несмотря на низкую стоимость, по ряду объективных причин, деревянные балки из цельной древесины в последнее время используются все реже. Качественные показатели этого материала значительно уступают клееному дереву: низкий модуль упругости способствует появлению больших прогибов в середине пролета (особенно это становится заметно при расстоянии между несущими стенами более 4 метров), при высыхании на балках появляются продольные трещины, которые приводят к уменьшению момента инерции прогиба, отсутствие пропитки подвергает древесину воздействиям вредителей и гниения.
Благодаря современным технологиям, клееные балки не имеют подобных недостатков. Их структура однородна и волокна ориентированы по всем направлениям – повышается общая прочность и модуль упругости материала, он получает защиту от растрескивания, а специальная пропитка обеспечивает повышенный уровень пожаробезопасности и устойчивости к влаге. Эти балки разрешено использовать при проемах в 6-9 м и можно рассматривать, как полноценный аналог железному перекрытию.
Цельная деревянная балка
Клееная балка из досок
Клееная балка из шпона
Обрезанное бревно
Подбор сечения балки
Для того чтобы подобрать сечение балки самостоятельно вручную, нужно иметь огромный багаж знаний в сфере сопромата, ведь вам потребуется применять на практике большое количество формул и коэффициентов, поэтому для начинающего мастера это достаточно сложная и не совсем нерациональная задача. Наш калькулятор должен помочь произвести приблизительный расчет деревянного перекрытия и сэкономить значительное количество времени. Однако пользователь должен понимать, что ни одна программа не заменит настоящего специалиста, так как принцип работы сервиса построен на обработке стандартных табличных величин и не может учитывать конкретных ситуаций.
Расчет балок перекрытия из дерева намного проще выполнить с помощью нашего калькулятора. Вам не нужно держать в голове много формул и переживать за неприведенную ошибку!
Расчет балки – Пример
Алгоритм работы программы для расчета балок основывается на СП 64.13330.2011 (Актуализированная редакция СНиП II-25-80). Для большей наглядности, мы разберем расчет однопролетной балки на прогиб и прочность в примере, кратко описывая основные этапы вычисления и формулы.
Длина балки
Расчетная длина балки определяется значением длины пролета и запасом для укладывания их на стену.
Узнать протяженность между пролетами не составляет трудности – с помощью рулетки замерьте расстояние, которые необходимо перекрыть балками, и к полученному числу добавьте величину заделки в «гнезда» равную 300 мм (по 150 мм на сторону) или более.
В случае, когда вы собираетесь крепить балки на специальные металлические крепления, длина пролета будет равна длине балки.
Если ваше помещение имеет неправильную форму, например, 4х5 м, правильнее будет использовать балки меньшей длины, т.е. 4 м, а не 5 м.
Определение расчетной нагрузки
Для того чтобы правильно рассчитать нагрузку на деревянную балку, нужно определить все виды оказываемых воздействий на перекрытие.
Величину нагрузки можно узнать двумя путями: использовать СНиП 2.01.07-85* Нагрузки и воздействия и с его помощью высчитать все необходимые коэффициенты вручную, а затем сложить их, или же можно взять нормативные данные из справочников. Если вы произведете все расчеты правильно, то первый вариант будет более точен, однако никто не застрахован, что при выполнении долгих громоздких вычислений не будет допущена ошибка.
Поэтому для получения приблизительного расчета, целесообразнее взять стандартные величины и применять их в последующих формулах. Согласно справочникам, для межэтажных перекрытий расчетная нагрузка обычно составляет 400 кг/м2, а для чердаков – 200 кг/м2.
Типовые нагрузки для межэтажных перекрытий — 400 кг/м2 и чердаков – 200 кг/м2 применимы не во всех ситуациях. Если подразумевается, что на основание будет воздействовать ненормально большой вес, например, от тяжелого оборудования – необходимо произвести корректировку начальных параметров.
Максимальный изгибающий момент
Изгибающий момент – момент внешних сил относительно нейтральной оси сечения балки или другого твёрдого тела, иначе простыми словами, это произведение силы на плечо.
Максимальный изгибающий момент, соответственно, принимает наибольшее значение, которое может выдержать данное тело без нарушения целостности.
Если на балку будет действовать равномерно распределенная нагрузка (в калькуляторе реализован именно этот случай), то значение максимального изгибающего момента будет равно:
Изгибающий момент (формула): Mmax = q × l2 / 8
- q – величина нагрузки на перекрытие;
- l – величина пролета перекрытия.
Требуемый момент сопротивления
Момент сопротивления – это способность материала оказывать сопротивления к изгибу, растяжению или сжатию. Для того чтобы определить это значение для деревянной балки, нужно воспользоваться готовой формулой:
Требуемый момент сопротивления (формула): Wтреб = Мmax / R
- Мmax – величина максимального изгибающего момента;
- R – величина расчетного сопротивления древесины.
Отдельно нужно рассказать о величине R. Она имеет целый ряд поправочных коэффициентов, которые нужно учитывать при расчете балки, если вы хотите получить максимально точный результат. Полная формула выглядит так:
Расчетное сопротивление древесины (формула): R = Rи × mп × mд × mт × ma × γсc × …
- Rи – расчетное сопротивление древесины изгибу, подбираемое в зависимости от расчетных значений для сосны, ели и лиственницы при влажности 12% согласно СП 64.13330.2011;
- mп – коэффициент перехода для других пород древесины;
- mд – поправочный коэффициент принимаемый в случае, когда постоянные и временный длительные нагрузки превышают 80% суммарного напряжения от всех нагрузок;
- mт – температурный коэффициент;
- ma – коэффициент принимаемый в случае, когда дерево подвергается пропитке антипиренами;
- γсc – коэффициент срока службы древесины.
- … – существуют другие менее важные коэффициенты, однако при расчетах они практически не используются, так как величина поправки слишком незначительна.
Получается, что по сути, величина R это произведение расчетного сопротивления древесины изгибу и различных поправок. В большинстве случаев для получения ориентировочного результата, эти поправки не учитываются, а значение R принимается равным Rи.
Момент сопротивления балки перекрытия
В зависимости от формы сечения балки (квадрат, прямоугольник, круг, овал…) формулы нахождения фактического момента сопротивления будут отличаться. В наших калькуляторах применяются только два типа профиля: прямоугольный и тесаное бревно. Мы продолжим разбирать алгоритм на примере прямоугольного сечения:
Момент сопротивления балки (формула): W = b × h2 /6
- b – ширина балки;
- h – высота балки.
Расчет балки на прочность
Для того чтобы определить подходит балка по прочности или нет, нужно чтобы момент сопротивления балки перекрытия (W), равнялся или был больше требуемого момента (Wтреб ):
Wтреб ≤ W
Но вычислить реальный момент сопротивления балки перекрытия мы не можем, так как не известна ее высота. В этом случае нужно или воспользоваться перебором сечений, исходя из условия, что наиболее оптимальное соотношение высоты к ширине 1,4:1, или же просто принять W = Wтреб, в силу того, что мы не нарушаем условий заданной формулы. Также, после этих манипуляций станет известен параметр h.
Онлайн калькулятор KALK.PRO расчета балки на прочность оперативно вычислит нужное сечение, чтобы перекрытие выдержало расчетную нагрузку БЫСТРО и БЕСПЛАТНО.
Расчет балки на прогиб (изгиб)
Методика определения прогиба балки значительно проще. При распределенной нагрузке, применяется формула:
Прогиб балки (формула): f = (5 × q × l4 ) / (384 × E × I)
- q – величина нагрузки на перекрытие;
- l – величина пролета перекрытия;
- E – модуль упругости;
- I – момент инерции.
Первые два параметра нам известны, модуль упругости для древесины обычно принимается равным 100 000 кгс/м², хотя это и не всегда так, а момент инерции, в зависимости от формы сечения, рассчитывается по разным формулам. Для прямоугольника:
Момент инерции (формула): I = b × h3 /12
- b – ширина балки;
- h – высота балки.
Собирая все в кучу, мы получим итоговую формулу расчета прогиба балки:
Прогиб балки (итоговая формула): f = (5 × q × l4 ) / (384 × E × (b × h3 / 12))
После того, как вы получите искомое значение, нужно сравнить его с величиной допустимого (предельного) прогиба балки в долях от пролета. Этот параметр устанавливается СНиП II-25-80 «Деревянные конструкции»:
Элементы конструкций |
Максимальный прогиб балки, не более |
1. Балки междуэтажных перекрытий |
L/250 |
2. Балки чердачных перекрытий |
L/200 |
3. Перекрытия при наличии стяжки/штукатурки |
L/350 |
Например, для межэтажных перекрытий при длине пролета равной 400 см мы получим условие – 400/250, т.е. предельно возможный изгиб в данной ситуации 1,6 см.
Если ваше значение f превышает его, необходимо изменять сечение балки в большую сторону, до тех пор, пока оно не станет меньше величины предельного прогиба.
Наш калькулятор прогиба деревянной балки сам подберет нужные параметры сечения и избавит вас от сложных громоздких вычислений.
Конечные параметры балки
После того, как вы подберете сечение при расчете на прочность и прогиб/изгиб, можно будет определить минимально допустимые параметры балки.
Предположим, что при расчете на прочность вы получили сечение – 165х150 мм, а при расчете на прогиб – 239х150 мм. Очевидно, что в подобной ситуации следует выбирать наибольшую величину, то есть значение на прогиб, поскольку если вы сделаете ровно наоборот, перекрытие выдержит нагрузку, но очень сильно деформируется и ни о каком ровном потолке не может быть и речи.
В результате расчета несущей способности деревянной балки, мы используем сечение равное 239х150 мм, но тут сталкиваемся с очередной проблемой – балок такого размера серийно никто не производит. В этом случае нужно производить округление обязательно в большую сторону, обычно кратно 50 мм, т.е. нам подойдет балка 250х150 мм. В некоторых ситуациях, можно обратиться к ГОСТ 24454-06, в нем указаны все типовые размеры материалов.
Расчет балки онлайн без знания сопромата – одно из главных преимуществ сервиса KALK.PRO.
Методика расчета балок перекрытия из клееного бруса и отесанного бревна
Технология расчета балок перекрытия из клееного бруса практически не отличается от изделий из цельной древесины. Все этапы работы с калькулятором совпадают и никакие дополнительные коэффициенты вводить не нужно, но при самостоятельном вычислении в формулу нахождения величины расчетного сопротивления (R), нужно будет добавить дополнительный коэффициент kw , который учитывает форму и размер поперечного сечения.
Например, для прямоугольных клееных балок принимаются следующие поправки:
Ширина балки b в см |
Коэффициент kw при высоте балки h см |
|||||
14-50 |
60 |
70 |
80 |
90 |
100 и более |
|
b < 14 |
1,00 |
0,95 |
0,90 |
0,85 |
0,80 |
0,75 |
b > 14 |
1,15 |
1,05 |
0,95 |
0,90 |
0,85 |
0,80 |
Также для клееных балок из шпона LVL Ultralam, существует более подробная аннотация с характеристиками на сайте производителя, в которой помимо значений величины R, существует подробные характеристики модуля упругости (E) для каждого вида продукции:
Модуль упругости Е, МПа |
||||
Rb |
Rs |
R |
X |
I |
16 000 |
15 600 |
14 000 |
11 000 |
12 700 |
В случае расчета тесаного бревна (лафета), немного изменяются исходные формулы момента сопротивления и момента инерции, так как форма сечения балки отличается от прямоугольной. Помимо этого, есть и отличия в ширине отеса, оно может быть равным половине или трети диаметра, что также приводит к изменению начальных коэффициентов для обеих формул.
Ширина отеса равна 1/2 диаметра |
Ширина отеса равна 1/3 диаметра |
Момент сопротивления |
|
W = 0,088D3 |
W = 0,09781D3 |
Момент инерции |
|
I = 0,039D4 |
I = 0,04611D4 |
Если у вас возникли проблемы при работе с онлайн калькулятором расчета балки на изгиб, есть вопросы или предложения – оставляйте их в комментариях. Добавляйте сайт в закладки и делитесь со своими друзьям. Убедитесь в высоком уровне сервисов KALK.PRO уже сейчас, вместе мы станем лучше!
Пример решения задачи по подбору минимальных размеров балки прямоугольного поперечного сечения, обеспечивающих её необходимую прочность.
Задача
Для заданной стальной балки подобрать размеры прямоугольного поперечного сечения по условию прочности.
Соотношение сторон сечения h=2b (h – высота, b – ширина).
Полученные размеры принять согласно ГОСТ 6636.
Допустимые напряжения для материала балки [σ]=160МПа.
Другие примеры решений >
Помощь с решением задач >
Решение
Предыдущие пункты решения задачи:
- Определение опорных реакций
- Построение эпюр внутренних поперечных сил и изгибающих моментов
- Расчет момента сопротивления сечения балки по условию прочности
Минимально необходимый расчетный момент сопротивления сечения балки составил
В случаях, когда система изгибающих нагрузок действующих на балку расположена в вертикальной плоскости сечение тоже следует располагать вертикально.
По справочнику находим формулу осевого момента сопротивления прямоугольного сечения
Используя заданное соотношение сторон (h=2b), уменьшим количество переменных в выражении
и запишем необходимое неравенство
откуда находим расчетную высоту прямоугольного сечения
Из заданного соотношения сторон определяем расчетную ширину сечения
Отметим, что полученные размеры являются минимально необходимыми для обеспечения прочности заданной балки.
При отсутствии дополнительных условий расчетные размеры можно округлить до целого значения в миллиметрах исключительно в большую сторону (h=153мм, b=77мм).
По ГОСТ 6636 нормальных линейных размеров выбираются ближайшие значения в сторону увеличения.
Следовательно, за окончательные размеры прямоугольного сечения балки принимаем: h=155мм, b=80мм.
После принятия размеров согласно ГОСТ заданное соотношение сторон может несколько измениться. Это нормально.
Оценка экономичности сечений >
Построение эпюры нормальных напряжений >
Другие примеры решения задач >
Сохранить или поделиться с друзьями
Вы находитесь тут:
На нашем сайте Вы можете получить решение задач и онлайн помощь
Подробнее
Для того, чтобы соорудить надежное деревянное перекрытие, необходимо правильно подобрать размеры балок, а для этого необходимо сделать их расчет. Деревянные балки перекрытия имеют следующие основные размеры: длину и сечение.
Их длина определяется шириной пролета, который требуется перекрыть, а сечение зависит как от нагрузки, которая будет на них действовать, от длины пролета и шага установки, то есть расстояния между ними.
В данной статье мы рассмотрим, как самостоятельно сделать такой расчет и правильно подобрать размеры балок.
Расчет балок деревянного перекрытия
Для того, чтобы определить какое количество деревянных балок и каких размеров потребуется для устройства перекрытия необходимо:
- замерить пролет, который они будут перекрывать;
- определиться со способами их закрепления на стенах (на какую глубину они будут заходить в стены);
- сделать расчет нагрузки, которая будет на них действовать при эксплуатации;
- с помощью таблиц или программы-калькулятора подобрать подходящие шаг и сечение.
Теперь рассмотрим, как это можно сделать.
Длина деревянных балок перекрытия
Необходимая длина балок перекрытия определяется размерами того пролета, который они будут перекрывать и запасом необходимым для заделывания их в стены. Длину пролета несложно замерить с помощью рулетки, а глубина заделывания в стены, во многом, зависит от их материала.
В домах со стенами из кирпича или блоков балки обычно заделываются в «гнезда» на глубину не менее 100 мм (доска) или 150 мм (брус). В деревянных домах их, как правило, укладываютс в специальные зарубки на глубину не меньше чем 70 мм.
При использовании специального металлического крепления (хомутов, уголков, кронштейнов) длина балок будет равна пролету — расстоянию между противоположными стенами, на которых они крепятся.
Иногда, при монтаже стропильных ног крыши непосредственно на деревянные балки, их выпускают наружу, за пределы стен на 30-50 см, формируя, таким образом, свес крыши.
Оптимальный пролет, которые могут перекрывать деревянные балки 2,5-4 м.
Максимальная длина балки из обрезной доски или бруса, то есть пролет, который она может перекрывать — 6 м. При большей длине пролета (6-12 м) необходимо использовать современные деревянные балки из клееного бруса или двутавровые, а также можно опирать их на промежуточные опоры (стены, колонны). Кроме этого для перекрытия пролетов, длиной более 6 м, вместо балок можно использовать деревянные фермы.
Определение нагрузки, действующей на перекрытие
Нагрузка, действующая на перекрытие по деревянным балкам состоит из нагрузки от собственного веса элементов перекрытия (балок, межбалочного заполнения, зашивки) и постоянной или временной эксплуатационной нагрузки (мебели, различных бытовых устройств, материалов, вес людей). Она, как правило, зависит от вида перекрытия и условий его эксплуатации.
Точный расчет таких нагрузок довольно громоздкий и выполняется специалистами при проектировании перекрытия, но при желании выполнить его самостоятельно, можно использовать упрощенный его вариант, приведенный ниже.
Для чердачного деревянного перекрытия, которое не используется для складирования вещей или материалов, с легкими утеплителем (минеральная вата или др.) и подшивкой постоянная нагрузка (от собственного веса — Рсобств.) обычно принимается в пределах 50 кг/м2.
Эксплуатационная нагрузка (Рэкспл.)для такого перекрытия (согласно СНиП 2.01.07-85) составит:
70х1,3 = 90 кг/м2, где 70 – нормативное значение нагрузки для такого вида чердака, кг/м2, 1,3 – коэффициент запаса.
Общая расчетная нагрузка, которая будет действовать на данное чердачное перекрытие составит:
Робщ.=Рсобств.+Рэкспл. = 50+90=130 кгм2. Округляя в большую сторону принимаем 150 кг/м2.
В случае, если в конструкции чердачного помещения будет использоваться более тяжелый утеплитель, материал для межбалочного заполнения или подшивка, а также если предполагается его использовать для хранения вещей или материалов, то есть оно будет интенсивно эксплуатироваться, то нормативное значение нагрузки следует увеличить до 150 кг/м2. В этом случае, общая нагрузка на перекрытие составит:
50+150х1,3 = 245 кг/м2, округляем до 250 кг/м2.
При использовании чердачного пространства для устройства мансарды, необходимо учесть вес полов, перегородок, мебели. В этом случае общую расчетную нагрузку необходимо увеличить до 300-350 кг/м2.
В связи с тем, что междуэтажное деревянное перекрытие, как правило, включает в свою конструкцию полы, а временная эксплуатационная нагрузка включает в себя вес большого количества предметов быта и максимальное присутствие людей, то оно должно быть рассчитано на общую нагрузку 350 — 400 кг/м2.
Сечение и шаг балок деревянного перекрытия
Зная необходимую длину балок деревянного перекрытия (L) и определив общую расчетную нагрузку можно определить необходимое их сечение (или диаметр) и шаг укладки, которые связаны между собой. Считается, что лучшим является прямоугольное сечение балки деревянного перекрытия, с соотношением высоты (h) и ширины (s) как 1,4:1. Ширина балок, при этом, может быть в пределах 40-200 мм, а высота 100-300 мм. Высоту балок часто выбирают такой, чтобы она соответствовала необходимой толщине утеплителя. При использовании в качестве балок бревен их диаметр может быть в пределах 11-30 см.
В зависимости от вида и сечения используемого материала, шаг балок деревянного перекрытия может быть от 30 см до 1,2 м, но чаще всего он выбирается в пределах 0,6-1,0 м.
Иногда его выбирают таким, чтобы он соответствовал размеру плит утеплителя, укладываемых в межбалочное пространство, или листов подшивки потолка. Кроме этого, в каркасных зданиях, желательно, чтобы шаг укладки балок соответствовал шагу стоек каркаса — в этом случае будет обеспечена наибольшая жесткость и надежность конструкции.
Сделать расчет или проверку уже выбранных размеров деревянных балок перекрытия можно по справочным таблицам (некоторые приведены ниже) или используя онлайн калькулятор «расчет деревянных балок перекрытия», который легко найти в интернете, «забив» соответствующий запрос в поисковике. При этом необходимо учесть, что относительный их прогиб для чердачных перекрытий не должен быть более 1/250, а для междуэтажных – 1/350.
Таблица 1
Рекомендуемое сечение балок из бруса (s x h), в зависимости от шага их укладки и перекрываемого пролета, при общей расчетной нагрузке 350-400 кг/м2 (междуэтажные перекрытия), мм:
Шаг,м Пролет,м | 2,0 | 3,0 | 4,0 | 5,0 | 6,0 |
0,6 | 75х100 | 75х200 | 100х200 | 150х200 | 150х225 |
1,0 | 75х150 | 100х175 | 125х200 | 150х225 | 175х250 |
Таблица 2
Рекомендуемое сечение балок перекрытия из досок и бруса при шаге 1 м, перекрываемом пролете 3-6,0 м и общей нагрузке от 150 до 300 кг/м2 (чердачное или междуэтажное перекрытие), мм:
Нагрузка, кг/м2\ Пролет, м | 3,0 | 4,0 | 5,0 | 6,0 |
150 | 50х140 | 60х180 | 80х200 | 100х220 |
200 | 50х160 | 70х180 | 100х200 | 140х220 |
250 | 60х160 | 70х200 | 120х200 | 160х220 |
300 | 70х160 | 80х200 | 120х220 | 200х220 |
Таблица 3
Рекомендуемый минимальный диаметр деревянных балок перекрытия из бревен (круглого сечения) при шаге 0,6-1 м, пролете 2-6 м и нагрузке 400 кг/м2, мм:
Шаг,м/Пролет,м | 2 | 3 | 4 | 5 | 6 |
0,6 | 110 | 140 | 170 | 200 | 230 |
1,0 | 130 | 170 | 210 | 240 | 270 |
Таблица 4
Рекомендуемый шаг балок из досок сечением 50х160-200 мм для пролета 3-6 м
Сечение
балки (доски), мм |
П
3,0 |
Р
3,5 |
О
4,0 |
Л
4,5 |
Ё
5,0 |
Т,
5,5 |
м
6,0 |
Чердачные перекрытия | |||||||
50х160 | 1200 | 900 | 650 | 500 | 420 | — | — |
50х200 | 1850 | 1350 | 1050 | 800 | 650 | 550 | 450 |
Междуэтажные перекрытия |
|||||||
50х160 | 800 | 600 | 450 | — | — | — | — |
50х200 | 1200 | 900 | 700 | 500 | 400 | — | — |
Подбирая сечение таким упрощенным способом, лучше подстраховаться и выбрать его с запасом или округлять значения в большую сторону.