Для описания движения используют три величины — скорость, время и расстояние. В координатном углу на горизонтальном луче отмечается время, на вертикальном — пройденное расстояние. Скорость объекта при равномерном движении можно вычислить.
Чтобы по графику движения определить скорость объекта (v), нужно узнать, какое расстояние (s) проходит объект за некоторое время (t), и найти частное расстояния и времени:
v=s:t
.
Для расчёта скорости можно взять любой удобный временной отрезок и пройденное за это время расстояние.
Пример:
по данному графику найти скорость движения объекта.
Решение.
(1) способ. За (1) час пройдено (8) км, то есть скорость объекта равна (8) км/ч.
(2) способ. За (5) часов пройдено (40) км, поэтому скорость объекта равна (40:5=8) км/ч.
Ответ: (8) км/ч.
При равномерном движении график представляет собой отрезок. И наоборот, в каждой точке отрезка скорость одинаковая.
Обрати внимание!
Чем больше скорость движения объекта, тем график круче.
Остановка в пути обозначается на графике движения горизонтальными отрезками, так как пройденное расстояние не меняется.
По данному графику движения можно определить, что с (9):(00) до (11):(00) была остановка в пути.
Источники:
Изображения: график движения. © ЯКласс.
Задание 1. На рисунке представлен график движения автобуса из пункта А в пункт Б и обратно. Пункт А находится в точке х = 0, а пункт Б — в точке х = 30 км. Чему равна скорость автобуса на пути из Б в А?
Решение задачи
Точка А соответствует x = 0 км, а точка Б соответствует x = 30 км, следовательно путь из Б в А это второй линейный сегмент на графике, начиная с t = 0,5 ч и заканчивая t = 1,1 ч. Так как скорость постоянна, то по формуле скорости материальной точки найдём проекцию искомой скорости:
Где Δx = 30 км, Δt = 1,1 — 0,5 = 0,6 ч.
Подставим числовые значения в формулу.
v = 30 / 0,6 = 50 км/ч.
Ответ к задаче
Ответ: 50 км/ч.
Просмотров: 6 675
Вектор скорости и ускорения материальной точки и их модули. Пример решения задач.
В очередной раз меня попросили решить пару задачек по физике, и я вдруг обнаружил, что не могу решить их с ходу. Немного погуглив, я обнаружил, что сайты в топе выдачи содержат сканы одного и того же учебника и не описывают конкретных примеров решений задачи о том, как найти вектор скорости и ускорения материальной точки. По-этому я решил поделиться с миром примером своего решения.
Траектория движения материальной точки через радиус-вектор
Подзабыв этот раздел математики, в моей памяти уравнения движения материальной точки всегда представлялись при помощи знакомой всем нам зависимости y(x) , и взглянув на текст задачи, я немного опешил когда увидел векторы. Оказалось, что существует представление траектории материальной точки при помощи радиус-вектора – вектора, задающего положение точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.
Формула траектория движения материальной точки помимо радиус-вектора описывается так же ортами – единичными векторами i, j , k в нашем случае совпадающими с осями системы координат. И, наконец, рассмотрим пример уравнения траектории материальной точки (в двумерном пространстве):
Что интересного в данном примере? Траектория движения точки задается синусами и косинусами, как вы думаете, как будет выглядеть график в всем нам знакомом представлении y(x) ? “Наверное какой-то жуткий”, подумали вы, но все не так сложно как кажется! Попробуем построить траекторию движения материальной точки y(x), если она движется по представленному выше закону:
Здесь я заметил квадрат косинуса, если вы в каком-нибудь примере видите квадрат синуса или косинуса, это значит что нужно применять основное тригонометрическое тождество, что я и сделал (вторая формула) и преобразовал формулу координаты y, чтобы вместо синуса подставить в нее формулу изменения x:
В итоге жуткий закон движения точки оказался обычной параболой, ветви которой направлены вниз. Надеюсь, вы поняли примерный алгоритм построения зависимости y(x) из представления движения через радиус-вектор. Теперь перейдем к нашему главному вопросу: как же найти вектор скорости и ускорения материальной точки, а так же их модули.
Вектор скорости материальной точки
Всем известно, что скорость материальной точки – это величина пройденного пути точкой за единицу времени, то есть производная от формулы закона движения. Чтобы найти вектор скорости нужно взять производную по времени. Давайте рассмотрим конкретный пример нахождения вектора скорости.
Пример нахождения вектора скорости
Имеем закон перемещения материальной точки:
Теперь нужно взять производную от этого многочлена, если вы забыли как это делается, то вот вам таблица производных различных функций. В итоге вектор скорости будет иметь следующий вид:
Все оказалось проще, чем вы думали, теперь найдем вектор ускорения материальной точки по тому же самому закону, представленному выше.
Как найти вектор ускорения материальной точки
Вектор ускорения точки это векторная величина, характеризующая изменение с течением времени модуля и направления скорости точки. Чтобы найти вектор ускорения материальной точки в нашем примере, нужно взять производную, но уже от формулы вектора скорости, представленной чуть выше:
Модуль вектора скорости точки
Теперь найдем модуль вектора скорости материальной точки. Как вы знаете из 9-го класса, модуль вектора – это его длина, в прямоугольных декартовых координатах равна квадратному корню из суммы квадратов его координат. И откуда же из полученного нами выше вектора скорости взять его координаты спросите вы? Все очень просто:
Теперь достаточно только подставить время, указанное в задаче и получить конкретное числовое значение.
Модуль вектора ускорения
Как вы поняли из написанного выше (и из 9-го класса), нахождение модуля вектора ускорения происходит тем же образом, что и модуля вектора скорости: извлекаем корень квадратный из суммы квадратов координат вектора, все просто! Ну и вот вам, конечно же, пример:
Как вы видите, ускорение материальной точки по заданному выше закону не зависит от времени и имеет постоянную величину и направление.
Еще примеры решений задачи нахождения вектора скорости и ускорения
А вот тут вы можете найти примеры решения и других задач по физике на тему “механика твердых тел”. А для тех, кто не совсем понял как найти вектор скорости и ускорения, вот вам еще парочка примеров из сети без всяких лишних объяснений, надеюсь, они вам помогут.
Если у вас возникли какие-нибудь вопросы, вы можете задать их в комментариях.
Как вычислить модуль скорости
Скорость тела характеризуется направлением и модулем. Иными словами, модуль скорости – это число, которое показывает, насколько стремительно тело передвигается в пространстве. Перемещение полагает метаморфоза координат.
Инструкция
1. Введите систему координат, касательно которой вы будете определять направление и модуль скорости . Если в задаче теснее задана формула зависимости скорости от времени, вводить систему координат не надобно – предполагается, что она теснее есть.
2. По имеющейся функции зависимости скорости от времени дозволено обнаружить значение скорости в всякий момент времени t. Пускай, скажем, v=2t?+5t-3. Если требуется обнаружить модуль скорости в момент времени t=1, примитивно подставьте это значение в уравнение и посчитайте v: v=2+5-3=4.
3. Когда задача требует обнаружить скорость в исходный момент времени, подставьте в функцию t=0. Таким же образом дозволено обнаружить время, подставив вестимую скорость. Так, в конце пути тело остановилось, то есть, его скорость стала равна нулю. Тогда 2t?+5t-3=0. Отсель t=[-5±?(25+24)]/4=[-5±7]/4. Получается, что либо t=-3, либо t=1/2, а от того что время не может быть негативным, остается только t=1/2.
4. Изредка в задачах уравнение скорости дается в завуалированной форме. Скажем, в условии сказано, что тело двигалось равноускоренно с негативным убыстрением -2 м/с?, а в первоначальный момент скорость тела составляла 10 м/с. Негативное убыстрение обозначает, что тело равномерно замедлялось. Из этих условий дозволено составить уравнение для скорости : v=10-2t. С всей секундой скорость будет уменьшаться на 2 м/с, пока тело не остановится. В конце пути скорость обнулится, следственно легко обнаружить всеобщее время движения: 10-2t=0, откуда t=5 секунд. Через 5 секунд позже начала движения тело остановится.
5. Помимо откровенного движения тела, существует еще и движение тела по окружности. В всеобщем случае оно является криволинейным. Тут появляется центростремительное убыстрение, которое связано с линейной скоростью формулой a(c)=v?/R, где R – радиус. Комфортно рассматривать также угловую скорость ?, причем v=?R.
Модуль числа n представляет собой число единичных отрезков от начала координат до точки n. Причем не главно, в какую сторону будет отсчитываться это расстояние – вправо либо налево от нуля.
Инструкция
1. Модуль числа также принято называть безусловной величиной этого числа . Он обозначается короткими вертикальными линиями, проведенными слева и справа от числа . Скажем, модуль числа 15 записывается дальнейшим образом: |15|.
2. Помните, что модуль может быть только позитивным числом либо нулем. Модуль позитивного числа равен самому числу. Модуль нуля равен нулю. То есть для всякого числа n, которое огромнее либо равно нулю, будет объективна дальнейшая формула |n| = n. Скажем, |15| = 15, то есть модуль числа 15 равен 15-ти.
3. Модулем негативного числа будет то же число, но с противоположным знаком. То есть для всякого числа n, которое поменьше нуля, будет объективна формула |n| = -n. Скажем, |-28| = 28. Модуль числа -28 равен 28-ми.
4. Дозволено находить модули не только для целых, но и для дробных чисел. Причем в отношении дробных чисел действуют те же правила. Скажем, |0,25| = 25, то есть модуль числа 0,25 будет равен 0,25. А |-?| = ?, то есть модуль числа -? будет равен ?.
5. При работе с модулями пригодно знать, что модули противоположных чисел неизменно равны друг другу, то есть |n| =|-n|. Это является основным свойством модулей. Скажем, |10| = |-10|. Модуль числа 10 равен 10-ти, верно так же, как модуль числа -10. Помимо того, |a – b| = |b – a|, потому что расстояние от точки a до точки b и расстояние от b до a равны друг другу. Скажем, |25 – 5| = |5 – 25|, то есть |20| = |- 20|.
Для нахождения метаморфозы скорости определитесь с типом движения тела. В случае если движение тела равномерно, изменение скорости равно нулю. Если тело движется с убыстрением, то изменение его скорости в весь момент времени дозволено узнать, если отнять от мгновенной скорости в данный момент времени его исходную скорость.
Вам понадобится
- секундомер, спидометр, радар, рулетка, акселерометр.
Инструкция
1. Определение метаморфозы скорости произвольно движущегося по прямой траекторииС поддержкой спидометра либо радара измерьте скорость тела в начале и конце отрезка пути. После этого от финального итога отнимите первоначальный, это и будет изменение скорости тела.
2. Определение метаморфозы скорости тела, движущегося с ускорениемНайдите убыстрение тела. Используйте акселерометр либо динамометр. Если знаменита масса тела, тогда силу, действующую на тело, поделите на его массу (a=F/m). Позже этого измерьте время, за которое происходил процесс метаморфозы скорости . Дабы обнаружить изменение скорости , умножьте значение убыстрения на время, за которое происходило это изменение (?v=a•t). Если убыстрение измерить в метрах на секунду в квадрате, а время – в секундах, то скорость получится в метрах на секунду. Если нет вероятности замерить время, но вестимо, что скорость менялась на определенном отрезке пути, спидометром либо радаром, измерьте скорость в начале этого отрезка, после этого с поддержкой рулетки либо дальномера измерьте длину этого пути и убыстрение. Любым из вышеописанных способов измерьте убыстрение, которое действовало на тело. Позже этого обнаружьте финальную скорость тела в конце участка пути. Для этого возведите исходную скорость в квадрат, прибавьте к ней произведение длины участка на убыстрение и число 2. Из итога извлеките квадратный корень. Дабы обнаружить изменение скорости , от полученного итога отнимите значение исходной скорости .
3. Определение метаморфозы скорости тела при поворотеЕсли изменилась не только величина, но и направление скорости , то обнаружьте ее изменение через векторную разность исходной и финальной скорости . Для этого измерьте угол между векторами. После этого от суммы квадратов скоростей отнимите удвоенное их произведение, умноженное на косинус угла между ними: v1?+v2?-2v1v2•Cos(?). Из полученного числа извлеките квадратный корень.
Видео по теме
Для определения скорости разных видов движения потребуются различные формулы. Дабы определить скорость равномерного движения, расстояние поделите на время его прохождения. Среднюю скорость движения находите сложением всех отрезков, которое прошло тело, на всеобщее время движения. При равноускоренном движении узнайте убыстрение, с которым двигалось тело, а при свободном падении высоту, с которой оно предисловие движение.
Вам понадобится
- дальномер, секундомер, акселерометр.
Инструкция
1. Скорость равномерного движения и средняя скоростьИзмерьте расстояние с поддержкой дальномера, которое прошло тело, а время, за которое оно его одолело, с поддержкой секундомера. Позже этого поделите расстояние, пройденное телом на время его прохождения, итогом будет скорость равномерного движения (v=S/t). Если тело движется неравномерно, произведите те же измерения и примените ту же формулу – тогда получите среднюю скорость тела. Это значит, что если бы тело по данному отрезку пути двигалось с полученной скоростью, оно было бы в пути время, равное измеренному. Если тело движется по окружности, измерьте ее радиус и время прохождения полного цикла, после этого радиус умножьте на 6,28 и поделите на время (v=6,28•R/t). Во всех случаях итог получится в метрах в секунду. Для перевода в километры в час помножьте его на 3,6.
2. Скорость равноускоренного движенияИзмерьте убыстрение тела с поддержкой акселерометра либо динамометра, если знаменита масса тела. Секундомером замерьте время движения тела и его исходную скорость, если тело не начинает двигаться из состояния покоя. Если же тело двигается из состояния покоя, она равна нулю. Позже этого узнайте скорость тела, прибавив к исходной скорости произведение убыстрения на время (v=v0+at).
3. Скорость вольно падающего телаС поддержкой дальномера измерьте высоту, с которой падает тело в метрах. Дабы узнать скорость, с которой оно долетит до поверхности Земли (без контроля сопротивления воздуха), умножьте высоту на 2 и на число 9,81 (убыстрение свободного падения). Из итога извлеките квадратный корень. Дабы обнаружить скорость тела на всякий высоте, применяйте ту же методологию, только от исходной высоты, отнимайте нынешнюю и полученное значение подставляйте взамен высоты.
Видео по теме
Человек привык воспринимать представление “скорость ” как что-то больше примитивное, чем это есть на самом деле. Подлинно, проносящийся на перекрестке автомобиль движется с определенной скорость ю, в то время как человек стоит и отслеживает за ним. Но если человек находится в движении, то умнее говорить не об безусловной скорости, а об относительной ее величине. Обнаружить относительную скорость дюже легко.
Инструкция
1. Дозволено продолжить рассмотрение темы движущегося на перекрестка на автомобиле. Человек же, стоя на красном свете светофора, стоит и глядит на проезжающий автомобиль. Человек статичен, следственно примем его за систему отсчета. Система отсчета – такая система, касательно которой движется какое-нибудь тело либо другая физическая точка.
2. Возможен, автомобиль движется со скорость ю 50 км/ч. Но, возможен, что человек побежал следом автомобилю (дозволено, скажем, взамен автомобиля представить маршрутку либо проезжающий мимо автобус). Скорость бега человека 12 км/ч. Таким образом, скорость данного механического транспортного средства представится человеку не столь и стремительной, как было прежде, когда он стоял! В этом каждая и суть относительной скорости. Относительная скорость неизменно измеряется касательно подвижной системы отсчета. Таким образом, скорость автомобиля не будет для пешехода 50 км/ч, а 50 – 12 = 38 км/ч.
3. Дозволено разглядеть еще один живой пример. Довольно припомнить всякий из моментов, когда человек, сидя у окна автобуса, отслеживает за проносящимися мимо автомобилями. Подлинно, из окна автобуса их скорость кажется примитивно потрясающей. И это не изумительно, чай, если принять автобус за систему отсчета, то скорость автомобиля и скорость автобуса надобно будет сложить. Возможен, что автобус движется со скорость ю 50 км/ч, а машины 60 км/ч. Тогда 50 + 60 = 110 км/ч. Именно с такой скорость ю эти самые автомобили проносятся мимо автобуса и пассажиров в нем.Эта же скорость будет объективна и действительна и в том случае, если за систему отсчета принять всякий из проезжающих мимо автобусов автомобилей.
Кинематика постигает разные виды движения тела с заданной скоростью, направлением и траекторией. Дабы определить его расположение касательно точки начала пути, надобно обнаружить перемещение тела .
Инструкция
1. Движение тела происходит по некоторой траектории. В случае откровенного движения ею является прямая линия, следственно обнаружить перемещение тела достаточно примитивно: оно равно пройденному пути. В отвратном случае определить его дозволено по координатам исходного и финального расположения в пространстве.
2. Величина перемещения физической точки является векторной, от того что она имеет направление. Следственно, дабы обнаружить ее числовое значение, нужно вычислить модуль вектора, соединяющего точки начала пути и его окончания.
3. Разглядим двухмерное координатное пространство. Пускай тело проделало путь от точки A (x0, y0) до точки B (x, y). Тогда, дабы обнаружить длину вектора АВ, опустите проекции его концов на оси абсцисс и ординат. Геометрически проекции касательно той и иной координатной оси дозволено представить в виде катетов прямоугольного треугольника с длинами:Sx = x – x0;Sy = y – y0, где Sx и Sy – проекции вектора на соответствующих осях.
4. Модуль вектора, т.е. длина перемещения тела , в свою очередь, является гипотенузой этого треугольника, длину которой легко определить по теореме Пифагора. Он равен квадратному корню из суммы квадратов проекций:S = ?(Sx? + Sy?).
5. В трехмерном пространстве:S = ?(Sx? + Sy? + Sz?), где Sz = z – z0.
6. Это формула является всеобщей для всякий разновидности движения. Вектор перемещения владеет несколькими свойствами: • его модуль не может превышать длину пройденного пути;• проекция перемещения может быть как позитивной, так и негативной величиной, в то время как величина пути неизменно огромнее нуля;• в всеобщем случае перемещение не совпадает с траекторией движения тела , а его модуль не равен пути.
7. В частном случае откровенного движения тело перемещается только по одной оси, скажем, оси абсцисс. Тогда длина перемещения равна разности финальной и исходной первой координаты точек:S = x – x0.
От модуля исходной скорости во многом зависят колляции движения тела. Для того дабы обнаружить эту величину, нужно воспользоваться дополнительными измерениями либо данными. Величина модуля исходной скорости может являться основополагающей колляцией, скажем, для огнестрельного оружия.
Вам понадобится
- – рулетка;
- – дальномер;
- – секундомер;
- – акселерометр;
- – спидометр;
- – угломер;
- – хронограф.
Инструкция
1. Вначале определитесь с типом движения. Если оно равномерное, то довольно измерить длину пути, по которому переместилось тело, сделав это рулеткой, дальномером либо иным доступным методом, и поделить это значение на время, за которое это перемещение осуществлялось. От того что движение равномерное, то модуль скорости на протяжении каждого пути будет идентичен, так что полученная скорость будет равна исходной.
2. При равноускоренном откровенном движении измерьте при помощи акселерометра убыстрение тела, а с подмогой секундомера время его движения, спидометром финальную скорость в конце отрезка пути. Обнаружьте значение модуля исходной скорости, отняв от финальной скорости произведение убыстрения на время движения v0=v-a*t. Если незнакомо значение убыстрения, измеряйте расстояние, которое покрыло тело за время t. Сделайте это при помощи рулетки либо дальномера.
3. Зафиксируйте значение финальной скорости. Обнаружьте исходную скорость, отняв от удвоенного значения расстояния S, поделенного на время, значение финальной скорости v, v0=2S/t-v. Когда значение финальной скорости измерить трудно, а убыстрение знаменито, воспользуйтесь иной формулой. Для этого измеряйте перемещение тела, а также время, которое оно было в пути. От значения перемещения отнимите произведение убыстрения на квадрат времени, поделенное на 2, а итог поделите на время, v0=(S-at?/2)/t либо v0=S/t-at/2.
4. Когда тело начинает движение под углом к горизонту, на него воздействует сила тяжести. Для того дабы обнаружить модуль исходной скорости, при помощи угломера замеряйте угол к горизонту, под которым тело начинает двигаться. При помощи рулетки либо дальномера замеряйте расстояние, на котором тело упадет на поверхность земли. Дабы определить модуль исходной скорости, расстояние S поделите на синус удвоенного угла ?. Из полученного итога извлеките квадратный корень, v0=?(S/sin(2?)).
5. Дабы измерить модуль исходной скорости пули, выпущенной из стрелкового оружия, используйте хронограф. Для этого установите его так, как указано в его инструкции, от того что хронографы бывают различных типов. Позже этого сделайте выстрел из оружия, на табло хронографа появится итог. Выстрелите еще несколько раз и возьмите среднее значение показаний хронографа. Это и будет модуль исходной скорости пули, выпущенного из данного типа стрелкового оружия.
В очередной раз меня попросили решить пару задачек по физике, и я вдруг обнаружил, что не могу решить их с ходу. Немного погуглив, я обнаружил, что сайты в топе выдачи содержат сканы одного и того же учебника и не описывают конкретных примеров решений задачи о том, как найти вектор скорости и ускорения материальной точки. По-этому я решил поделиться с миром примером своего решения.
Траектория движения материальной точки через радиус-вектор
Подзабыв этот раздел математики, в моей памяти уравнения движения материальной точки всегда представлялись при помощи знакомой всем нам зависимости y(x) , и взглянув на текст задачи, я немного опешил когда увидел векторы. Оказалось, что существует представление траектории материальной точки при помощи радиус-вектора — вектора, задающего положение точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.
Формула траектория движения материальной точки помимо радиус-вектора описывается так же ортами — единичными векторами i, j , k в нашем случае совпадающими с осями системы координат. И, наконец, рассмотрим пример уравнения траектории материальной точки (в двумерном пространстве):
Что интересного в данном примере? Траектория движения точки задается синусами и косинусами, как вы думаете, как будет выглядеть график в всем нам знакомом представлении y(x) ? «Наверное какой-то жуткий», подумали вы, но все не так сложно как кажется! Попробуем построить траекторию движения материальной точки y(x), если она движется по представленному выше закону:
Здесь я заметил квадрат косинуса, если вы в каком-нибудь примере видите квадрат синуса или косинуса, это значит что нужно применять основное тригонометрическое тождество, что я и сделал (вторая формула) и преобразовал формулу координаты y, чтобы вместо синуса подставить в нее формулу изменения x:
В итоге жуткий закон движения точки оказался обычной параболой, ветви которой направлены вниз. Надеюсь, вы поняли примерный алгоритм построения зависимости y(x) из представления движения через радиус-вектор. Теперь перейдем к нашему главному вопросу: как же найти вектор скорости и ускорения материальной точки, а так же их модули.
Вектор скорости материальной точки
Всем известно, что скорость материальной точки — это величина пройденного пути точкой за единицу времени, то есть производная от формулы закона движения. Чтобы найти вектор скорости нужно взять производную по времени. Давайте рассмотрим конкретный пример нахождения вектора скорости.
Пример нахождения вектора скорости
Имеем закон перемещения материальной точки:
Теперь нужно взять производную от этого многочлена, если вы забыли как это делается, то вот вам таблица производных различных функций. В итоге вектор скорости будет иметь следующий вид:
Все оказалось проще, чем вы думали, теперь найдем вектор ускорения материальной точки по тому же самому закону, представленному выше.
Как найти вектор ускорения материальной точки
Вектор ускорения точки это векторная величина, характеризующая изменение с течением времени модуля и направления скорости точки. Чтобы найти вектор ускорения материальной точки в нашем примере, нужно взять производную, но уже от формулы вектора скорости, представленной чуть выше:
Модуль вектора скорости точки
Теперь найдем модуль вектора скорости материальной точки. Как вы знаете из 9-го класса, модуль вектора — это его длина, в прямоугольных декартовых координатах равна квадратному корню из суммы квадратов его координат. И откуда же из полученного нами выше вектора скорости взять его координаты спросите вы? Все очень просто:
Теперь достаточно только подставить время, указанное в задаче и получить конкретное числовое значение.
Модуль вектора ускорения
Как вы поняли из написанного выше (и из 9-го класса), нахождение модуля вектора ускорения происходит тем же образом, что и модуля вектора скорости: извлекаем корень квадратный из суммы квадратов координат вектора, все просто! Ну и вот вам, конечно же, пример:
Как вы видите, ускорение материальной точки по заданному выше закону не зависит от времени и имеет постоянную величину и направление.
Еще примеры решений задачи нахождения вектора скорости и ускорения
А вот тут вы можете найти примеры решения и других задач по физике на тему «механика твердых тел». А для тех, кто не совсем понял как найти вектор скорости и ускорения, вот вам еще парочка примеров из сети без всяких лишних объяснений, надеюсь, они вам помогут.
Если у вас возникли какие-нибудь вопросы, вы можете задать их в комментариях.
Основываясь на определении скорости, мы можем утверждать, что скорость является вектором. Она непосредственно выражается через вектор-перемещения, отнесенный к промежутку времени, и должна обладать всеми свойствами вектора перемещения.
Направление вектора скорости, так же как направление физически малого вектора перемещения, определяется по чертежу траектории. В этом можно наглядно убедиться на простых примерах.
Если к вращающемуся точильному камню прикоснуться железной пластинкой, то снимаемые им опилки приобретут скорость тех точек камня, к которым прикасалась пластинка, и затем улетят в направлении вектора этой скорости. Все точки камня движутся по окружностям. Во время опыта хорошо видно, что отрывающиеся раскаленные частички-опилки уходят по касательным к этим окружностям, указывая направления векторов скоростей отдельных точек вращающегося точильного камня.
Обратите внимание на то, как расположены выходные трубы у кожуха центробежного водяного насоса или у сепаратора для молока. В этих машинах частицы жидкости заставляют двигаться по окружностям и затем дают им возможность выйти в отверстие, расположенное в направлении вектора той скорости, которую они имеют в момент выхода. Направление вектора скорости в этот момент совпадает с направлением касательной к траектории движения частиц жидкости. И выходная труба тоже направлена по этой касательной.
Точно так же обеспечивают выход частиц в современных ускорителях электронов и протонов при ядерных исследованиях.
Итак, мы убедились, что направление вектора скорости определяется по траектории движения тела. Вектор скорости всегда направлен вдоль касательной к траектории в той точке, через которую проходит движущееся тело.
Для того чтобы определить, в какую сторону вдоль касательной направлен вектор скорости и каков его модуль, нужно обратиться к закону движения. Допустим, что закон движения задан графиком, показанным на рис. 1.54. Возьмем приращение длины пути соответствующее малому вектору по которому определяется вектор скорости. Вспомним, что Знак указывает
направление движения по траектории, а следовательно, определяет ориентировку вектора скорости вдоль касательной. Очевидно, что через модуль этого приращения длины пути будет определяться модуль скорости.
Таким образом, модуль вектора скорости и ориентировку вектора скорости вдоль касательной к траектории можно определить из соотношения
Здесь является алгебраической величиной, знак которой указывает, в какую сторону по касательной к траектории направлен вектор скорости.
Итак, мы убедились, что модуль вектора скорости может быть найден по графику закона движения. Отношение определяет угол наклона а касательной на этом графике. Наклон касательной на графике закона движения будет тем больше, чем больше т. е. чем больше в выбранный момент скорость движения.
Еще раз обратим внимание на то, что для полного определения скорости требуется одновременное знание траектории и закона движения. Чертеж траектории позволяет определить направление скорости, а график закона движения — ее модуль и знак.
Если теперь мы обратимся снова к определению механического движения, то убедимся в том, что после введения понятия скорости для полного описания любого движения больше ничего не требуется. Используя понятия радиус-вектора, вектора перемещения, вектора скорости, длины пути, траектории и закона движения, можно получить ответы на все вопросы, связанные с определением особенностей любого движения. Все эти понятия взаимосвязаны друг с другом, причем знание траектории и закона движения позволяет найти любую из этих величин.
Как найти вектор скорости по графику
Графическое представление равномерного прямолинейного движения
Механическое движение представляют графическим способом. Зависимость физических величин выражают при помощи функций. Обозначают:
V (t) — изменение скорости со временем
S(t) — изменение перемещения (пути) со временем
a(t) — изменение ускорения со временем
За висимость ускорения от времени. Так как при равномерном движении ускорение равно нулю, то зависимость a(t) — прямая линия, которая лежит на оси времени.
Зависимость скорости от времени. Так как тело движется прямолинейно и равномерно ( v = const ), т.е. скорость со временем не изменяется, то график с зависимостью скорости от времени v(t) — прямая линия, параллельная оси времени.
Проекция перемещения тела численно равна площади прямоугольника АОВС под графиком, так как величина вектора перемещения равна произведению вектора скорости на время, за которое было совершено перемещение.
Правило определения пути по графику v(t): при прямолинейном равномерном движении модуль вектора перемещения равен площади прямоугольника под графиком скорости.
Зависимость перемещения от времени. График s(t) — наклонная линия :
Из графика видно, что проекция скорости равна:
Рассмотрев эту формулу, мы можем сказать, чем больше угол, тем быстрей движется тело и оно проходит больший путь за меньшее время.
Правило определения скорости по графику s(t): Тангенс угла наклона графика к оси времени равен скорости движения.
Неравномерное прямолинейное движение.
Равномерное движение это движение с постоянной скоростью. Если скорость тела меняется, говорят, что оно движется неравномерно.
Движение, при котором тело за равные промежутки времени совершает неодинаковые перемещения, называют неравномерным или переменным движением.
Для характеристики неравномерного движения вводится понятие средней скорости.
Средняя скорость движения равна отношению всего пути, пройденного материальной точкой к промежутку времени, за который этот путь пройден.
В физике наибольший интерес представляет не средняя, а мгновенная скорость, которая определяется как предел, к которому стремится средняя скорость за бесконечно малый промежуток времени Δt:
Мгновенной скоростью переменного движения называют скорость тела в данный момент времени или в данной точке траектории.
Мгновенная скорость тела в любой точке криволинейной траектории направлена по касательной к траектории в этой точке.
Различие между средней и мгновенной скоростями показано на рисунке.
Движение тела, при котором его скорость за любые равные промежутки времени изменяется одинаково, называют равноускоренным или равнопеременным движением.
Ускорение — это векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло.
Если скорость изменяется одинаково в течение всего времени движения, то ускорение можно рассчитать по формуле:
Vx — Скорость тела при равноускоренном движении по прямой
Vx o — Начальная скорость тела
ax — Ускорение тела
t — Время движения тела
Ускорение показывает, как быстро изменяетcя скорость тела. Если ускорение положительно, значит скорость тела увеличивается, движение ускоренное. Если ускорение отрицательно, значит скорость уменьшается, движение замедленное.
Единица измерения ускорения в СИ [м/с 2 ].
Ускорение измеряют акселерометром
Уравнение скорости для равноускоренного движения: vx = vxo + axt
Уравнение равноускоренного прямолинейного движения (перемещение при равноускоренном движении):
Sx — Перемещение тела при равноускоренном движении по прямой
Vx o — Начальная скорость тела
Vx — Скорость тела при равноускоренном движении по прямой
ax — Ускорение тела
t — Время движения тела
Еще формулы, для нахождения перемещения при равноускоренном прямолинейном движении, которые можно использовать при решении задач:
— если известны начальная, конечная скорости движения и ускорение.
— если известны начальная, конечная скорости движения и время всего движения
Графическое представление неравномерного прямолинейного движения
Механическое движение представляют графическим способом. Зависимость физических величин выражают при помощи функций. Обозначают:
V(t) — изменение скорости со временем
S(t) — изменение перемещения (пути) со временем
a(t) — изменение ускорения со временем
Зависимость ускорения от времени. Ускорение со временем не изменяется, имеет постоянное значение, график a(t) — прямая линия, параллельная оси времени.
Зависимость скорости от времени. При равномерном движении скорость изменяется, согласно линейной зависимости vx = vxo + axt . Графиком является наклонная линия.
Правило определения пути по графику v(t): Путь тела — это площадь треугольника (или трапеции) под графиком скорости.
Правило определения ускорения по графику v(t): Ускорение тела — это тангенс угла наклона графика к оси времени. Если тело замедляет движение, ускорение отрицательное, угол графика тупой, поэтому находим тангенс смежного угла.
Зависимость пути от времени. При равноускоренном движении путь изменяется, согласно квадратной зависимости:
В координатах зависимость имеет вид:
http://hd01.ru/info/kak-vychislit-modul-skorosti/
http://www.sites.google.com/site/opatpofizike/teoria/teoria-10-klass/graficeskoe-predstavlenie-dvizenia
Графики движения
Г. Муравин,Москва
Графики движения
о популярной ошибке
С задачами на движение
школьники начинают знакомиться еще в начальной
школе, и к началу изучения понятия функции можно
считать, что этот материал им хорошо знаком.
Наверное поэтому одним из первых графиков
зависимостей, с которыми школьники знакомятся,
является график движения. Однако под словами
график движения скрываются две, вообще говоря,
различные зависимости: зависимость пройденного
пути от времени движения и зависимость
расстояния от движущегося объекта до некоторой
точки. Понятно, что график первой из них должен
быть графиком неубывающей функции, так как
пройденный путь уменьшиться никак не может. По
графику пути можно легко определить, когда
делалась остановка и сколько она продолжалась –
это выражается участком графика, параллельным
оси абсцисс. Можно также определить, какой путь
был пройден за тот или иной временной интервал, а
значит, и найти на нем среднюю скорость движения.
С другой стороны, по графику расстояния можно
получить лишь информацию о том, как с течением
времени изменялось расстояние от начала отсчета.
Заметим, что если расстояние в какой-то
промежуток времени не изменяется – это еще
недостаточное основание для вывода об остановке;
так, например, при движении по окружности
расстояние до ее центра не изменяется. В то же
время, в отличие от пройденного пути, ничто не
мешает расстоянию уменьшаться. Понятно, что по
графику расстояния (за исключением случая, когда
движение происходит по прямой, на которой
расположена точка отсчета) принципиально
невозможно судить, как меняется пройденный путь,
и, следовательно, нельзя найти скорость движения.
Несмотря на очевидность
высказанных соображений о различиях графиков
пути и расстояния, они почему-то игнорируются
авторами школьных учебников. Приведем в качестве
примеров задачи из трех разных учебников.
Начнем с учебника математики
для 3 класса Л.Г. Петерсон (Часть 4, с.75, № 4):
«На рисунке 1 изображен график
движения экскурсионного автобуса Москва —
Владимир.
а) В котором часу автобус
выехал из Москвы и когда вернулся обратно?
б) Определите скорость его движения на всех
участках пути.
в) Сколько времени пробыли туристы в Покрове?
Во Владимире? В Ногинске?
г) Сколько времени затратил автобус на путь от
Владимира до Ногинска? Сколько времени он
затратил на весь обратный путь?
д) На каком расстоянии от Москвы и на каком
расстоянии от Покрова был автобус в 12 ч? В 18 ч 30
мин?
е) В котором часу он находился на расстоянии 40 км
от Москвы?»
Оставим в стороне вопрос
целесообразности изучения графиков в третьем
классе и проанализируем, на какие вопросы автор
ожидает получить ответы по данному графику.
Во-первых следует отметить, что перед нами график
расстояния от Москвы (по-видимому, имеется ввиду
автовокзал) до автобуса. Во-вторых, достаточно
посмотреть на карту Московской области, чтобы
сказать, что автобус шел не по прямой,
следовательно, ответить на вопрос б) о скорости
движения автобуса по этому графику невозможно,
что, однако, не мешает школьникам на него
отвечать, как видно из сделанных ими на рисунке
надписей.
В самом массовом учебнике
«Алгебра, 7» авторов Ю.Н. Макарычева и др. от
переиздания к переизданию остается задача о
рыболове (в издании 2000 г. ее номер 364):
«Рыболов вышел из дома и пошел
на озеро, где ловил рыбу (по-видимому, авторы
имели ввиду, что он пошел на озеро ловить рыбу).
Затем он вернулся обратно.
График движения рыболова
показан на рисунке 2.
Узнайте по графику:
а) каково расстояние от дома до озера; б) сколько
часов шел рыболов до озера и сколько часов он
затратил на обратный путь;
в) сколько часов был рыболов на озере; г) на каком
расстоянии от дома был рыболов через 1 ч после
выхода из дома; д) через сколько часов после
выхода рыболов был на расстоянии 6 км от дома; е)
какова средняя скорость рыболова на пути к озеру
и на обратном пути».
В этой задаче мы также видим
график расстояния,
а значит, «узнать по нему» можно только ответы на
вопросы г) и д). Дело в том, что в условии задачи не
содержится достаточной информации о том, прямая
ли дорога от дома до озера и является ли место
рыбалки ближайшей к дому рыболова точкой озера.
Понятно, что, если это не так, то ответить на
остальные вопросы не удастся.
А теперь возьмем новый
учебник: «Математика, 7 класс», авторов Г.В.
Дорофеева и др. И в нем мы находим под номером 609
аналогичную задачу:
«Турист поднялся из поселка
на вершину горы и затем вернулся обратно в
поселок. На рисунке 3 представлен график движения
туриста. С помощью графика найдите:
а) Сколько времени турист
пробыл на вершине горы?
б) За сколько минут турист прошел первый километр
подъема и первый километр спуска?
в) Сколько километров турист прошел за первые
полчаса пути? за следующий час пути?
г) Через сколько времени от начала движения
турист был в 2 км от поселка?
д) Какова была средняя скорость туриста (в км/ч) на
подъеме? на спуске?»
Каждому, кто представляет
себе, по какому серпантину обычно поднимаются в
гору, понятно, что о прямолинейном движении здесь
речь идти не может, а значит, нельзя по этому
графику ответить на вопросы а), б), в) и д), то есть
на четыре вопроса из пяти заданных – своего рода
рекорд.
Обратим внимание еще на один,
скорее психологический, недостаток этой задачи.
Большинство учащихся, рассматривая приведенный
график, склонны ассоциировать восхождение
туриста на гору с «подъемом» соответствующей
части графика. И несложно предугадать их ответ,
например, на вопрос: «Какова высота горы?».
Возможно, что для
формирования умений работать с графиками
функций физическая бессмысленность или
некорректность задаваемых вопросов не так уж и
важна, однако с точки зрения прикладных аспектов
курса математики, а также для установления
межпредметных связей с курсом физики такое
искажение «правды жизни» совершенно
недопустимо. Тем более, что учет различий между
графиками пути и расстояния позволяет не только
обогатить чисто математическую составляющую
работы с графиками, но и сделать изучаемый
материал для школьников интереснее,
активизировать их работу. Приведем два примера
из учебника «Алгебра,7 класс» авторов
К.С. Муравина, Г.К. Муравина, Г.В.Дорофеева, которые
перешли в него из более раннего учебника
«Алгебра, 7–9» К.С. Муравина и Г.К. Муравина. В
качестве первого примера рассмотрим одну из
предлагаемых в этом учебнике исследовательских
работ.
«График расстояния.
Туристы отправились на
байдарках по течению реки из пункта А в пункт В со
скоростью 5 км/ч. После 3 ч пути они сделали
остановку на 1 ч, а затем поплыли дальше со
скоростью 6 км/ч. На рисунке 4 (рисунок уменьшен по
сравнению с учебником) изображена схема маршрута
туристов, на которой отмечены отрезки пути
длиной 1 км.
Приборы и материалы: схема
маршрута туристов в масштабе 1:20 000,
измерительный циркуль, линейка.
Указания к работе
1. Определите на схеме точку, в
которой находились туристы через 1 ч после
отправления из пункта А.
2. Найдите расстояние от этой точки до пункта А
(первый вариант); до пункта В (второй вариант).
3. Запишите полученный результат в таблицу:
4. Определите на схеме точки, в
которых находились туристы через 2 ч, через 3 ч и
т.д. после отправления из пункта А, и найдите
соответствующие расстояния. Заполните таблицу.
5. Постройте график зависимости d от t».
Выполнение этой работы
позволяет сформировать у школьников адекватные
представления о различии между понятиями пути и
расстояния и в то же время является хорошей
тренировкой в работе с графиками. По полученному
графику можно поставить ряд дополнительных
вопросов, например: «Когда расстояние от пункта
А(В) до туристов сокращалось, увеличивалось, было
наибольшим?». Причем ответы на эти вопросы,
подкрепляются конкретной схемой маршрута.
Задача (№ 350), как и только что
рассмотренная исследовательская работа,
посвящена графику расстояния:
«Парусная лодка отошла от
причала А и через некоторое время подошла к
причалу В, находящемуся на другом берегу реки. На
рисунках 5, 6 показана траектория движения лодки и
дан график зависимости расстояния лодки до
причала А от времени ее движения. Найдите по
графику:
1) на каком расстоянии от
причала А находилась лодка через:
а) 3 мин; б) 6 мин; в) 9 мин; г)
13 мин; д) 16 мин после отправления;
2) через сколько минут после отправления лодка
находилась от причала А на расстоянии:
а) 300 м; б) 600 м; в) 900 м; г)
1100 м;
3) каково было наибольшее расстояние от лодки до
причала А;
4) на каком расстоянии от причала А расположен
причал В.
Означает ли горизонтальный
участок графика, что лодка находилась на одном и
том же месте?»
Одновременное рассмотрение
графиков расстояния и схем движения позволяет
ученикам лучше осознать, какую информацию можно
получить из графика, а какую нельзя, что график
отражает только некоторые характеристики
реального процесса.
Данная статья была посвящена
одному, в общем-то, довольно частному вопросу
преподавания алгебры в 7 классе. Сейчас в
издательстве «Дрофа» готовится к выходу пособие
для учителя «Методические рекомендации и
комментарии к преподаванию алгебры в 7 классе»
Г.К. Муравина, в котором подробно рассмотрен
широкий круг теоретических и практических
вопросов методики школьного курса алгебры,
приведено тематическое планирование,
контрольные работы и конспекты некоторых уроков.
Книга ориентирована на учебник «Алгебра, 7 класс»
К.С. Муравина, Г.К. Муравина, Г.В. Дорофеева,
вышедший в 1998 г. в издательстве «Дрофа», однако
автор надеется, что и учителя, работающие по
другим учебникам алгебры, найдут в ней много
полезного и, приобретя хотя бы для себя учебник,
сделают обучение семиклассников интереснее и
эффективнее.
Графики функций
В задании №13 ЕГЭ по математике базового уровня придется продемонстрировать умения и знания одного из понятий поведения функции: производных в точке или скоростей возрастания или убывания. Теория к этому заданию будет добавлена чуть позже, но это не помешает нам подробно разобрать несколько типовых вариантов.
Разбор типовых вариантов заданий №14 ЕГЭ по математике базового уровня
Вариант 14МБ1
[su_note note_color=”#defae6″]
На графике изображена зависимость температуры от времени в процессе разогрева двигателя легкового автомобиля. На горизонтальной оси отмечено время в минутах, прошедшее с момента запуска двигателя; на вертикальной оси – температура двигателя в градусах Цельсия.
Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику процесса разогрева двигателя на этом интервале.
ИНТЕРВАЛЫ ВРЕМЕНИ:
А) 0 – 1 мин. Б) 1 – 3 мин. В) 3 – 6 мин. Г) 8 – 10 мин. |
ХАРАКТЕРИСТИКИ:
|
В таблице под каждой буквой укажите соответствующий номер.
[/su_note]
Алгоритм выполнения:
- Выбрать интервал времени, на котором температура падала.
- Приложить линейку к 30°С и определить интервал времени, на котором температура была ниже 30°С.
- С помощью карандаша и линейки найдем на каком интервале времени температура находилась в пределах от 40°С до 80°С.
- Методом исключения выберем недостающий вариант ответа.
Решение:
Выберем интервал времени, на котором температура падала. Этот участок видно не вооруженным глазом, он начинается в 8 мин от момента запуска двигателя.
Г – 2
Приложим линейку к 30°С и определить интервал времени, на котором температура была ниже 30°С.
Ниже линейки окажется участок, соответствующий интервалу времени 0 – 1 мин.
А – 4
С помощью карандаша и линейки найдем на каком интервале времени температура находилась в пределах от 40°С до 80°С.
Опустим из точек, соответствующих 40°С и 80°С перпендикуляры на график, а из полученных точек опустим перпендикуляры на ось времени.
Видим, что этому температурному интервалу соответствует интервал времени 3 – 6,5 мин. То есть из приведенных в условии 3 – 6 мин.
В – 3
Методом исключения выберем недостающий вариант ответа.
Б – 1
Ответ:
А – 4
Б – 1
В – 3
Г – 2
Вариант 14МБ2
[su_note note_color=”#defae6″]
Установите соответствие между графиками функций и графиками их производных.
[/su_note]
Алгоритм выполнения для каждой из функций:
- Определить промежутки возрастания и убывания функций.
- Определить точки максимума и точки минимума функций.
- Сделать выводы, поставить в соответствие предложенные графики.
Решение:
Проанализируем график функции А. Если Функция возрастает, то производная положительна и наоборот. Производная функции равна нулю в точках экстремума.
Точка экстремума – это точка, в которой достигается максимальное или минимальное значение функции.
Сначала функция А возрастает, т.е. производная положительна. Этому соответствуют графики производных 2 и 3. В точке максимума функции x=-2, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 3.
А – 3
Проанализируем график функции Б.
Сначала функция Б убывает, т.е. производная отрицательна. Этому соответствуют графики производных 1 и 4. Точка максимума функции x=-2, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 4.
Б – 4
Проанализируем график функции В.
Сначала функция В возрастает, т.е. производная положительна. Этому соответствуют графики производных 2 и 3. Точка максимума функции x = 1, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 2.
В – 2
Методом исключения можем определить, что графику функции Г соответствует график производной под номером 1.
Г – 1
А – 3
Б – 4
В – 2
Г – 1
Ответ: 3421.
Вариант 14МБ3
[su_note note_color=”#defae6″]
Установите соответствие между графиками функций и графиками их производных.
[/su_note]
Алгоритм выполнения для каждой из функций:
- Определить промежутки возрастания и убывания функций.
- Определить точки максимума и точки минимума функций.
- Сделать выводы, поставить в соответствие предложенные графики.
Решение:
Проанализируем график функции А.
Если функция возрастает, то производная положительна и наоборот. Производная функции равна нулю в точках экстремума.
Точка экстремума – это точка, в которой достигается максимальное или минимальное значение функции.
Сначала функция А возрастает, т.е. производная положительна. Этому соответствуют графики производных 3 и 4. В точке максимума функции x=0, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 4.
А – 4
Проанализируем график функции Б.
Сначала функция Б убывает, т.е. производная отрицательна. Этому соответствуют графики производных 1 и 2. Точка минимума функции x=-1, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 2.
Б – 2
Проанализируем график функции В.
Сначала функция В убывает, т.е. производная отрицательна. Этому соответствуют графики производных 1 и 2. Точка минимума функции x = 0, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 1.
В – 1
Методом исключения можем определить, что графику функции Г соответствует график производной под номером 3.
Г – 3
А – 4
Б – 2
В – 1
Г – 3
Ответ: 4213.
Вариант 14МБ4
[su_note note_color=”#defae6″]
На рисунке изображен график функции и касательные, проведённые к нему в точках с абсциссами А, В, С и D. В правом столбце указаны значения производной в точках А, В, С и D. Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней.
ТОЧКИ
А
В
С
D
ЗНАЧЕНИЯ ПРОИЗВОДНОЙ
1) –4
2) 3
3) 2/3
4) -1/2
[/su_note]
Вспомним, что означает производная, а именно ее значение в точке – значение функции производной в точке равно тангенсу угла наклона (коэффициенту) касательной.
В ответах у нас есть два положительных, и два отрицательных варианта. Как мы помним, если коэффициент прямой (графика y = kx+ b) положительный – то прямая возрастает, если же он отрицательный – то прямая убывает.
Возрастающих прямых у нас две – в точке A и D. Теперь вспомним, что же означает значение коэффициента k?
Коэффициент k показывает, насколько быстро возрастает или убывает функция (на самом деле коэффициент k сам является производной функции y = kx+ b).
Поэтому k = 2/3 соответствует более пологой прямой – D, а k = 3 – A.
Аналогично и в случае с отрицательными значениями: точке B соответствует более крутая прямая с k = – 4, а точке С – -1/2.
Вариант 14МБ5
[su_note note_color=”#defae6″]
На рисунке точками показаны объемы месячных продаж обогревателей в магазине бытовой техники. По горизонтали указываются месяцы, по вертикали – количество проданных обогревателей. Для наглядности точки соединены линией.
Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику продаж обогревателей.
[/su_note]
Алгоритм выполнения
Анализируем части графика, соответствующие разным временам года. Формулируем ситуации, отображенные на графике. Находим для них наиболее подходящие варианты ответов.
Решение:
Зимой кол-во продаж превысило 120 шт./мес., причем оно все время увеличивалось. Эта ситуация соответствует варианту ответа №3. Т.е. получаем: А–3.
Весной продажи постепенно упали со 120 обогревателей за месяц до 50. Наиболее приближенным к этой формулировке является вариант №2. Имеем: Б–2.
Летом кол-во продаж не менялась и была минимальной. 2-я часть этой формулировки не отражена в ответах, а для первой подходит только №4. Отсюда имеем: В–4.
Осенью продажи росли, однако их кол-во ни в одном из месяцев не превысило 100 штук. Эта ситуация описана в варианте №1. Получаем: Г–1.
Вариант 14МБ6
[su_note note_color=”#defae6″]
На графике изображена зависимость скорости движения рейсового автобуса от времени. На вертикальной оси отмечена скорость автобуса в км/ч, на горизонтальной – время в минутах, прошедшее с начала движения автобуса.
Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику движения автобуса на этом интервале.
[/su_note]
Алгоритм выполнения
- Определяем цену деления на горизонтальной и на вертикальной шкале.
- Анализируем по очереди предложенные утверждения 1–4 из правой колонки («Характеристики»). Сопоставляем их с временными интервалами из левой колонки таблицы, находим пары «буква–число» для ответа.
Решение:
Цена деления горизонтальной шкалы составляет 1 с, вертикальной – 20 км/ч.
Далее анализируем характеристики, данные в правой колонке таблицы.
- Когда автобус делает остановку, его скорость равна 0. Нулевую скорость в течение 2 минут подряд автобус имел только с 9-й по 11-ю минуту. Это время попадает в интервал 8–12 мин. Значит, имеем пару для ответа: Б–1.
- Скорость 20 км/ч и больше автобус имел в течение нескольких временных промежутков. Причем вариант А здесь не подходит, т.к., к примеру, на 7-й минуте скорость составляла 60 км/ч, вариант Б – потому что он уже применен, вариант Г – потому что в начале и конце промежутка автобус имел нулевую скорость. В данном случае подходит вариант В (12–16 мин); на этом промежутке автобус начинает движение со скоростью 40 км/ч, далее ускоряется до 100 км/м и потом постепенно снижает скорость до 20 км/ч. Итак, имеем: В–2.
- Здесь установлено ограничение для скорости. При этом варианты Б и В мы не рассматриваем. Оставшиеся же интервалы А и Г подходят оба. Поэтому правильно будет рассмотреть сначала 4-й вариант, а потом снова вернуться в 3-му.
- Из двух оставшихся интервалов для характеристики №4 подходит только 4–8 мин, поскольку на этом промежутке остановка была (на 6-й минуте). На промежутке 18–22 мин остановок не было. Получаем: А–4. Отсюда следует, что для характеристики №3 нужно взять интервал Г, т.е. получается пара Г–3.
Вариант 14МБ7
[su_note note_color=”#defae6″]
На рисунке точками показан прирост населения Китая в период с 2004 по 2013 год. По горизонтали указывается год, по вертикали – прирост населения в процентах (увеличение численности населения относительно прошлого года). Для наглядности точки соединены линией.
Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику прироста населения Китая в этот период.
[/su_note]
Алгоритм выполнения
- Определяем цену деления вертикальной шкалы рисунка. Находится она как разница пары соседних значений шкалы, деленная на 2 (т.к. между двумя соседними значениями имеется 2 деления).
- Анализируем последовательно приведенные в условии характеристики 1–4 (левая табличная колонка). Сопоставляем каждую из них с конкретным периодом времени (правая табличная колонка).
Решение:
Цена деления вертикальной шкалы составляет 0,01%.
- Падение прироста непрерывно продолжалось с 2004 по 2010 год. В 2010–2011 годах прирост был стабильно минимальным, и начиная с 2012 года оно начал увеличиваться. Т.е. остановка прироста произошла в 2010 году. Этот год находится в периоде 2009–2011 гг. Соответственно, имеем: В–1.
- Наибольшим падением прироста следует считать самую «круто» падающую линию графика на рисунке. Она приходится на период 2006–2007 гг. и составляет 0,04%, за год (0,59–0,56=0,04% в 2006 г. и 0,56–0,52=0,04% в 2007 г.). Отсюда получаем: А–2.
- Указанный в характеристике №3 прирост начался с 2007 года, продолжился в 2008 г. и завершился в 2009 году. Это соответствует периоду времени Б, т.е. имеем: Б–3.
- Прирост населения начал увеличиваться после 2011 г., т.е. в 2012–2013 гг. Поэтому получаем: Г–4.
Вариант 14МБ8
[su_note note_color=”#defae6″]
На рисунке изображены график функции и касательные, проведенные к нему в точках с абсциссами А,В,С и D.
В правом столбце указаны значения производной функции в точках А, В, С и D. Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней.
[/su_note]
Алгоритм выполнения
- Рассматриваем пару касательных, имеющих острый угол с положит.направлением оси абсцисс. Сравниваем их, находим соответствие среди пары соответствующих значений производных.
- Рассматриваем пару касательных, образующих с положит.направлением оси абсцисс тупой угол. Сравниваем их по модулю, определяем соответствие их значениям производных среди двух оставшихся в правой колонке.
Решение:
Острый угол с положит.направлением оси абсцисс образуют производные в т.В и т.С. Эти производные имеют положит.значения. Поэтому выбирать тут следует между значениями №№1 и 3. Применяя правило о том, что если угол меньше 450, то производная меньше 1, а если больше, то больше 1, делаем вывод: в т.В производная по модулю больше 1, в т.С – меньше 1. Это означает, что можно составить пары для ответа: В–3 и С–1.
Производные в т.А и т.D образуют с положит.направлением оси абсцисс тупой угол. И тут применяем то же правило, немного перефразировав его: чем больше касательная в точке «прижата» к линии оси абсцисс (к отрицат. ее направлению), тем больше она по модулю. Тогда получаем: производная в т.А по модулю меньше, чем производная в т.D. Отсюда имеем пары для ответа: А–2 и D–4.
Вариант 14МБ9
[su_note note_color=”#defae6″]
На рисунке точками показана среднесуточная температура воздуха в Москве в январе 2011 года. По горизонтали указываются числа месяца, по вертикали – температура в градусах Цельсия. Для наглядности точки соединены линией.
Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику изменения температуры.
[/su_note]
Алгоритм выполнения
Анализируем последовательно характеристики 1–4 (правая колонка), используя график на рисунке. Ставим каждой из них в соответствие конкретный временной период (левая колонка).
Решение:
- Рост температуры наблюдался только в конце периода 22–28 января. Здесь 27 и 28 числа она повышалась соответственно на 1 и на 2 градуса. В конце периода 1–7 января температура была стабильной (–10 градусов), в конце 8–14 и 15–21 января понижалась (с –1 до –2 и с –11 до –12 градусов соответственно). Поэтому получаем: Г–1.
- Поскольку каждый временной период охватывает 7 дней, то анализировать нужно температуру, начиная с 4-го дня каждого периода. Неизменной в течение 3–4 дней температура была только с 4 по 7 января. Поэтому получаем ответ: А–2.
- Месячный минимум температуры наблюдался 17 января. Это число входит в период 15–21 января. Отсюда имеем пару: В–3.
- Температурный максимум пришелся 10 января и составил +1 градус. Эта дата попадает в период 8–14 января. Значит, имеем: Б–4.
Вариант 14МБ10
[su_note note_color=”#defae6″]
На рисунке изображен график функции y=f(x) и отмечены точки А, В, С и D на оси Ох..
Пользуясь графиком, поставьте в соответствие каждой точке характеристики функции и ее производной
[/su_note]
Алгоритм выполнения
- Значение функции в точке положительно, если эта точка расположена выше оси Ох.
- Производная в точке больше нуля, если касательная к этой точке образует острый угол с положительным направлением оси Ох.
Решение:
Точка А. Она находится ниже оси Ох, значит значение функции в ней отрицательно. Если провести в ней касательную, то угол между нею и положит.направлением Ох составит около 900, т.е. образует острый угол. Значит, в данном случае подходит характеристика №3. Т.е. имеем: А–3.
Точка Б. Она находится над осью Ох, т.е. точка имеет положит.значение функции. Касательная в этой точке будет довольно близко «прилегать» к оси абсцисс, образуя тупой угол (немногим меньше 1800) с положительным ее направлением. Соответственно, производная в этой точке отрицательна. Т.о., здесь подходит характеристика 1. Получаем ответ: В–1.
Точка С. Точка расположена ниже оси Ох, касательная в ней образует большой тупой угол с положит.направлением оси абсцисс. Т.е. в т.С значение и функции, и производной отрицательно, что соответствует характеристике №2. Ответ: С–2.
Точка D. Точка находится выше оси Ох, а касательная в ней образует с положит.направлением оси острый угол. Это говорит о том, что как значение функции, так и значение производной здесь больше нуля. Ответ: D–4.
Вариант 14МБ11
[su_note note_color=”#defae6″]
На рисунке точками показаны объемы месячных продаж холодильников в магазине бытовой техники. По горизонтали указываются месяцы, по вертикали – количество проданных холодильников. Для наглядности точки соединены линией.
Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику продаж холодильников.
[/su_note]
Алгоритм выполнения
- При необходимости найти кол-во холодильников за тот или иной период нужно определять их сумму за три месяца.
- Анализировать следует характеристики 1–4 (правая колонка), находя для каждой из них соответствие в виде временного периода (левая колонка).
Решение:
Анализируем характеристики:
- Меньше всего холодильников продано в начале и в конце года. Поэтому рассмотрим периоды январь–март и октябрь–декабрь. В январе–марте было продано примерно 250+250+300=800 холодильников, в октябре–декабре – примерно 350+200+100=650. Значит, здесь подходит все-таки последний период. Ответ: Г–1.
- Длительный рост продаж наблюдался с апреля по июль. Это время охватывает полностью период апрель–июнь и захватывает начало следующего. Поэтому получаем: Б–2.
- Тут тоже требуется найти сумму проданных единиц за целые периоды. Для 1-го и последнего периода она уже найдена (см.п.1). Считаем для 2-го и 3-го, получаем: 300+400+600=1300 – в апреле–июне, примерно 650+600+550=1800 – в июле–сентябре. К требуемым 800 холодильникам максимально приближен объем продаж в январе–марте. Поэтому имеем: А–3.
- Одинаковое падение объема продаж означает, что разница между кол-вом проданных холодильников должна быть одинаковой. Падение продаж наблюдалось, начиная с конца июля. В августе падение составило 650–600=50 штук, в сентябре – 600–550=50 штук. Далее, в октябре, разница составила уже 550–350=200 холодильников, в ноябре 350–200=150, в декабре 200–100=100. Т.о., подходит в данном случаем период июль–сентябрь. Ответ: В–4.
Вариант 14МБ12
[su_note note_color=”#defae6″]
На рисунке точками показан годовой объем добычи угля в России открытым способом в период с 2001 по 2010 год. По горизонтали указывается год, по вертикали – объем добычи угля в миллионах тонн. Для наглядности точки соединены линиями.
Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов характеристику добычи угля в этот период.
[/su_note]
Алгоритм выполнения
- Точки, которые не приходятся на точные значения шкалы вертикальной оси, определяем приблизительно.
- Анализируем по очереди приведенные (в правом столбце) характеристики, используя данный график. Определяем соответствие каждой из них конкретного временного периода.
Решение:
Анализируем характеристики:
- Объем добычи меньше 190 млн т приходился на период с 2001 года по 2005 год. Затем спад добычи зафиксирован в 2009 году, но один год не составляет периода. 2001–2005 годы полностью попадают в период А (2002–2004 гг.). Поэтому получаем ответ: А–1.
- Такая формулировка «объем… сначала уменьшался, а затем начал расти» соответствует 2 периодам – 2002–2003 гг. и 2009–2010 гг. Но т.к. первый из этих периодов уже взят в качестве ответа, то правильно здесь использовать пару Г–2.
- Ситуация, описанная в 3-й характеристике, наиболее точно отображена в периоде 2006–2008 гг. Именно в это время добыча сначала понемногу увеличивалась (примерно с 190 млн т до 210), а потом резко возросла до 250 млн т. Т.е. подходящий ответ здесь: 2006–2008 гг. и, соответственно, имеем: В–3.
- Медленный рост следует искать в период, когда линия графика имеет наиболее пологий вид. Это: 2004–2006 год, что соответствует периоду Б, т.е. получаем: Б–4.
Вариант 14МБ13
[su_note note_color=”#defae6″]
На графике изображена зависимость температуры от времени в процессе разогрева двигателя легкового автомобиля. На горизонтальной оси отмечено время в минутах, прошедшее с момента запуска двигателя, на вертикальной оси – температура двигателя в градусах Цельсия.
Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику температуры.
[/su_note]
Алгоритм выполнения
Анализируем сначала очередную характеристику, а затем сопоставляем ее с конкретным временным интервалом.
Решение:
- Выше 600 температура была с 4-й по 7-ю минуту. Поэтому здесь нужно взять интервал 4–6 мин. Получаем: В–1.
- Температура падала только после 7-й минуты. Соответственно, тут подходит интервал 7–9 мин. Ответ: Г–2.
- Самый быстрый рост температуры происходил там, где график имеет наиболее «крутой» вертикальный подъем. Это имеет место только в 1-ю минуту нагревания. Т.е. подходящим интервалом является 0–1 мин. Ответ: А–3.
- В пределах 40–50 0С температура имела место, начиная со 2-й по 3-ю минуту. Значит, нужно выбрать интервал 2–3мин. Ответ: Б–4.
Вариант 14МБ14
[su_note note_color=”#defae6″]
На графике изображена зависимость частоты пульса гимнаста от времени в течение и после его выступления в вольных упражнениях. На горизонтальной оси отмечено время (в минутах), прошедшее с начала выступления гимнаста, на вертикальной оси – частота пульса (в ударах в минуту).
Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику пульса гимнаста на этом интервале.
[/su_note]
Алгоритм выполнения
- Для анализа характеристики нужно использовать только 1-ю половину графика.
- Для точек графика, которые не попадают в «узлы» сетки рисунка (т.е. для которых невозможно определить точные значения), нужно определять значения приблизительно.
- Величина роста пульса связана с пологостью (или, напротив, крутизной) линии графика. Это означает, что чем большее изменение значения функции происходит за тот или иной (но обязательно одинаковый) промежуток времени, тем больше величина роста.
Решение:
Анализируем предложенные характеристики:
- Если частота пульса сначала падала, а затем росла, то на графике это должно выразиться в «прогибе» линии графика вниз. Такая кривизна наблюдается только в течение 3–4 минуты. Значит, получаем ответ: Г–1.
- Самый большой «подъем» линии на 1-й половине графика имеет место с 1-й по 2-ю минуту. Отсюда получаем: Б–2.
- Частота пульса падала, начиная со 2-й минуты. В течение 3–4 минут тоже наблюдалось падение, однако оно потом перешло в рост. Поэтому правильным здесь следует считать интервал В. Т.о., ответ: В–3.
- Единственный интервал, на котором частота не превысила 100 ударов, – 0–1 мин. Отсюда имеем ответ: А–4.
Даниил Романович | Просмотров: 22.7k