Движение тела, брошенного вертикально вверх
Тело, брошенное вертикально вверх, движется равномерно замедленно с начальной скоростью u0 и ускорением
a = -g.
Перемещение тела за время t представляет собой высоту подъема h.
Для этого движения справедливы формулы:
Если:
u0 — начальная скорость движения тела ,
u — скорость падения тела спустя время t,
g — ускорение свободного падения, 9.81 (м/с²),
h — высота на которую поднимется тело за время t,
t — время,
То, движение тела, брошенного вертикально вверх описывается следующими формулами:
Высота подъема тела за некоторое время, зная конечную скорость
[ h = frac{u_0 + u}{2} t ]
Высота подъема тела за некоторое время, зная ускорение свободного падения
[ h = u_0 t — frac{g t^2}{2} ]
Скорость тела через некоторое время, зная ускорение свободного падения
[ u = u_0 — gt ]
Скорость тела на некоторой высоте, зная ускорение свободного падения
[ u = sqrt{ u_0^2 — 2gh} ]
Максимальная высота подъема тела, зная первоначальную скорость и ускорение свободного падения
Тело, брошенное вертикально вверх, достигает максимальной высоты в тот момент, когда его скорость обращается в ноль. Поднявшись на максимальную высоту тело начинает свободное падение вниз.
[ h_{max} = frac{u_0^2}{2g} ]
Время подъема на максимальную высоту подъема тела, зная первоначальную скорость и ускорение свободного падения
[ t_{hmax} = frac{u_0}{g} ]
Примечание к статье: Движение тела, брошенного вертикально вверх
- Сопротивление воздуха в данных формулах не учитывается.
- Ускорение свободного падения имеет приведенное значение (9.81 (м/с²)) вблизи земной поверхности. Значение g на других расстояниях от поверхности Земли изменяется!
Движение тела, брошенного вертикально вверх |
стр. 409 |
---|
Вторник, а это значит, что сегодня мы снова решаем задачи. На это раз, на тему «свободное падение тел».
Присоединяйтесь к нам в телеграм и получайте актуальную рассылку каждый день!
Задачи на свободное падение тел с решением
Задача №1. Нахождение скорости при свободном падении
Условие
Тело падает с высоты 20 метров. Какую скорость оно разовьет перед столкновением с Землей?
Решение
Высота нам известна по условию. Для решения применим формулу для скорости тела в момент падения и вычислим:
Ответ: примерно 20 метров в секунду.
Задача №2. Нахождение высоты и времени движения тела, брошенного вертикально.
Условие
Индеец выпускает стрелу из лука вертикально вверх с начальной скоростью 25 метров в секунду. За какое время стрела окажется в наивысшей точке и какой максимальной высоты она достигнет стрела?
Решение
Сначала запишем формулу из кинематики для скорости. Как известно, в наивысшей точке траектории скорость стрелы равна нулю:
Теперь запишем закон движения для вертикальной оси, направленной вертикально вверх.
Ответ: 2,5 секунды, 46 метров.
Задача №3. Нахождение времени движения тела, брошенного вертикально вверх
Условие
Мячик бросили вертикально вверх с начальной скоростью 30 метров в секунду. Через какое время мяч окажется на высоте 25 метров?
Решение
Запишем уравнение для движения мячика:
Мы получили квадратное уравнение. Упростим его и найдем корни:
Как видим, уравнение имеет два решения. Первый раз мячик побывал на высоте через 1 секунду (когда поднимался), а второй раз через 5 секунд (когда падал обратно).
Ответ: 1с, 5с.
Задача №4. Нахождение высоты при движении тела под углом к горизонту
Условие
Камень, брошенный с крыши дома под углом альфа к горизонту, через время t1=0,5c достиг максимальной высоты, а еще через время t2=2,5c упал на землю. Определите высоту Н дома. Сопротивлением воздуха пренебречь. Ускорение свободного падения g = 10 м/с2.
Решение
Камень брошен со скоростью v0 под углом α к горизонту с дома высотой Н. Эту скорость можно разложить на две составляющие: v0X (горизонтальная) и v0Y (вертикальная). В горизонтальном направлении на камень не действует никаких сил (сопротивлением воздуха пренебрегаем), поэтому горизонтальная составляющая скорости неизменна на протяжении всего времени полета камня (равномерное движение). Максимальная точка траектории камня над уровнем земли (исходя из кинематических соотношений):
Здесь t1 – время подъема камня с высоты Н на высоту h; g – ускорение свободного падения.
Вертикальную составляющую скорости можно вычислить исходя из геометрических соображений:
Подставив выражение для скорости в первое уравнение, получим:
Также высоту h можно выразить через время t2 падения камня с высоты h на землю (исходя из кинематических соотношений и учитывая, что с вертикальная составляющая скорости в наивысшей точке равна нулю):
Для высоты дома можно записать:
Так как вертикальная составляющая скорости камня в максимальной точке траектории равна нулю:
Подставляем в формулу для высоты H и вычисляем:
Ответ: H = 30 м.
Задача №5. Нахождение закона движения тела
Условие
Найти закон движения тела против силы тяжести, при начальной скорости V0. И на какую максимальную высоту поднимется тело? Тело бросили под углом 90 градусов.
Решение
Тело брошено под углом α=90° к горизонту. Другими словами, тело брошено вертикально вверх с начальной скоростью V0. Направим координатную ось х вертикально вверх, так ее направление совпадает с вектором начальной скорости. F – сила тяжести, направленная вниз. В начальный момент тело находится в точке А.
В задаче нужно найти закон движения тела, то есть зависимость координаты тела от времени. В общем случае этот закон задается кинематическим соотношением:
где х0 – начальная координата тела; a – ускорение.
Так как мы поместили начало координат в точку А, х0=0. Тело движется с ускорением свободного падения g, при этом сила тяжести направлена против начальной скорости, поэтому в проекции на вертикальную ось a=-g. Таким образом, искомый закон движения перепишется в виде:
Далее будем использовать еще одно общее кинематическое соотношение:
где V – конечная скорость.
Максимальная высота подъема тела указана на рисунке точной B, в этот момент конечная скорость V равна нулю, а координата х равна максимальной высоте Н подъема тела. Отсюда можно найти выражение для этой величины:
Полезные формулы для решения задач на свободное падение
Свободное падение описывается формулами кинематики. Мы не будем приводить их вывод, но запишем самые полезные.
Формула для максимальной высоты подъема тела, брошенного вертикально вверх c некоторой начальной скоростью:
Кстати, как выводится именно эта формула можно посмотреть в последней задаче.
Формула для времени подъема и падения тела, брошенного вертикально вверх:
Скорость тела в момент падения с высоты h:
Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы.
Вопросы с ответами на свободное падение тел
Вопрос 1. Как направлен вектор ускорения свободного падения?
Ответ: можно просто сказать, что ускорение g направлено вниз. На самом деле, если говорить точнее, ускорение свободного падения направлено к центру Земли.
Вопрос 2. От чего зависит ускорение свободного падения?
Ответ: на Земле ускорение свободного падения зависит от географической широты, а также от высоты h подъема тела над поверхностью. На других планетах эта величина зависит от массы M и радиус R небесного тела. Общая формула для ускорения свободного падения:
Вопрос 3. Тело бросают вертикально вверх. Как можно охарактеризовать это движение?
Ответ: В этом случае тело движется равноускоренно. Причем время подъема и время падения тела с максимальной высоты равны.
Вопрос 4. А если тело бросают не вверх, а горизонтально или под углом к горизонту. Какое это движение?
Ответ: можно сказать, что это тоже свободное падение. В данном случае движение нужно рассматривать относительно двух осей: вертикальной и горизонтальной. Относительно горизонтальной оси тело движется равномерно, а относительно вертикальной – равноускоренно с ускорением g.
Баллистика – наука, изучающая особенности и законы движения тел, брошенных под углом к горизонту.
Вопрос 5. Что значит «свободное» падение.
Ответ: в данном контексте понимается, что тело при падении свободно от сопротивления воздуха.
Свободное падение тел: определения, примеры
Свободное падение – равноускоренное движение, происходящее под действием силы тяжести.
Первые попытки систематизированно и количественно описать свободное падение тел относятся к средневековью. Правда, тогда было широко распространено заблуждение, что тела разной массы падают с разной скоростью. На самом деле, в этом есть доля правды, ведь в реальном мире на скорость падения сильно влияет сопротивление воздуха.
Однако, если им можно пренебречь, то скорость падающих тел разной массы будет одинакова. Кстати, скорость при свободном падении возрастает пропорционально времени падения.
Ускорение свободно падающих тел не зависит от их массы.
Рекорд свободного падения для человека на данный момент принадлежит австрийскому парашютисту Феликсу Баумгартнеру, который в 2012 году прыгнул с высоты 39 километров и находился в свободном падении 36 402,6 метра.
Примеры свободного падения тел:
- яблоко летит на голову Ньютона;
- парашютист выпрыгивает из самолета;
- перышко падает в герметичной трубке, из которой откачан воздух.
При свободном падении тела возникает состояние невесомости. Например, в таком же состоянии находятся предметы на космической станции, движущейся по орбите вокруг Земли. Можно сказать, что станция медленно, очень медленно падает на планету.
Конечно, свободное падение возможно не только не Земле, но и вблизи любого тела, обладающего достаточной массой. На других комических телах падения также будет равноускоренным, но величина ускорения свободного падения будет отличаться от земной. Кстати, раньше у нас уже выходил материал про гравитацию.
При решении задач ускорение g принято считать равным 9,81 м/с^2. В реальности его величина варьируется от 9,832 (на полюсах) до 9,78 (на экваторе). Такая разница обусловлена вращением Земли вокруг своей оси.
Нужна помощь в решении задач по физике? Обращайтесь в профессиональный студенческий сервис в любое время.
В этой статье мы собираемся изучить различные способы определения скорости без учета времени, а также примеры, некоторые факты и способы решения связанных проблем.
Исходя из этого, энергия объекта сохраняется; скорость объекта равна квадратному корню из удвоенного произведения его ускорения на расстояние, которое он проходит, также в зависимости от начальной скорости объекта.
Как найти конечную скорость без времени?
Ускоряющийся объект со временем меняет свою скорость.
Скорость, достигаемая объектом за период времени, пока он не перестанет ускоряться в течение этого времени, называется конечной скоростью объекта.
Давайте посмотрим, как найти конечную скорость без использования временного символа.
Рассмотрим график скорость-время, показывающий изменение скорости объекта при равномерном линейном движении во времени. Из графика видно, что время T = 0, скорость = u, а в момент времени T = t скорость = v.
Поскольку скорость — это отношение изменения положения с изменяющимся временем, смещение будет равно
х=vt — (1)
Приведенный выше график связан со смещением соотношением, показанным в уравнении (1).
Измерим площадь, покрытую объектом, общая площадь будет равна сумме площадей треугольника (∆ABC) и четырехугольника (□ ACDO).
х = Ar(∆ABC)+ Ar(∆ACDO)
=1/2 бч+фунт
=1/2 t*(vu)+ut—(3)
Поскольку ускорение равно изменению скорости со временем, т.е.
а=dv/dt — (4)
а=ву/т-0=ву/т
ву=ат—(5)
Подставляя уравнение (5) в уравнение (3)
х=1/2 t * at+ut
х=1/2 при2+ут—(6)
Таким образом,
Из уравнения (4) имеем
дв=адт
Интегрируя это уравнение, получаем
∫dv=∫dt
v = при + C
При t = 0 v = u, следовательно, C = u
Следовательно,
v=u+at —(7)
Теперь это уравнение является уравнением, зависящим от времени, а время t из приведенного выше соотношения равно
t=vu/a —(8)
Средняя скорость — это сумма всех скоростей, достигнутых объектом в разные промежутки времени, деленная на общее количество скоростей, суммированных вместе. Здесь у нас есть две скорости: начальная скорость u и конечная скорость v, поэтому средняя скорость равна
Vсредний=Vокончательный+Vначальный/Общее количество скоростей
Vсредний=(v+u)/2 — (9)
Используя уравнение (1), x=vt
Подставляя уравнения (8) и (9) в уравнение (1)
х=(v+u)/2 *(vu)/a
х=v2-u2/2а
2акс = v2-u2/2
v2=u2+2акс — (10)
Приведенное выше уравнение не зависит от времени и показывает связь между начальной скоростью объекта, постоянным ускорением и перемещением объекта.
Problem1: Мяч движется в прямолинейное движение с ускорением 2 м/с. Если начальная скорость мяча 4 м/с, то какой будет его скорость, когда он преодолеет расстояние 20 м?
Дано: a = 2 м / с
u = 4 м / с
d = 20 м
Используя уравнение (10),
v2=u2+2 оси
=42+2*2*20
= 16 + 80 = 96 м / с
поэтому v=9.8 м/с
Следовательно, когда мяч преодолеет расстояние 60 метров, скорость мяча составит 9.8 м / с.
Как определить скорость падающего объекта без учета времени?
Линейная скорость зависит от времени и представляет собой отношение изменения положения во времени.
Падение предмета сопровождается энергии внутри него, в форме кинетической энергии и потенциальной энергии, и энергия не может быть ни создана, ни исчезнуть. На основании этого факта мы можем рассчитать скорость объекта независимо от времени.
Когда объект поднимается на высота над землей приобретает некоторый потенциал энергия, которая затем преобразуется в кинетическую энергию и используется во время полета.
Рассмотрим объект массы m, который стоит на столе высотой h.1, он испытывает внешнюю силу, набирает обороты и начинает ускоряться по направлению к земле. Поскольку объект покоится на столе, его начальная скорость u = 0 и, следовательно, кинетическая энергия также равна нулю. Объект на высоте h1 имеет потенциальную энергию U1 связанные с ним.
U1= mgh1
Начиная свой путь к земле, эта потенциальная энергия преобразуется в кинетическую энергию.
KE2=1/2мВ2
После падения на землю потенциальная энергия тела U2= mgh0; так как ч0=0, U_2=0.
Поскольку энергия объекта сохраняется, сумма кинетической энергии и потенциальной энергии до и после падения на землю будет равна.
KE1+U1=КЭ2+U2
U1=КЭ2
MGH1=1/2мВ2
v2=2гх1
v = √2gh1-(Один)
Следовательно, скорость объекта, падающего на землю под действием силы тяжести, определяется уравнением (11).
Problem2: Мальчик играет с мячом. Он подбросил мяч высоко в воздух и наблюдает за его свободным падением. Какова будет скорость мяча при приближении к земле, если мяч поднимется на высоту 8 метров над поверхностью Земли?
Дано: Высота h = 8м,
g = 9.8 м / с2
Используя уравнение (11),
v = √2gh1
=√2*9.8*8
=√156.8=12.52 м/с
Следовательно, конечная скорость мяча, приближающегося к земле, будет равна 12.5 м / с.
Как найти горизонтальную скорость без времени?
Объект, движущийся в горизонтальном направлении независимо от ускорения свободного падения Земли и приложенной силы, называется горизонтальной скоростью.
Горизонтальная скорость в простоте равна отношению расстояния, пройденного объектом, и времени, затраченного на преодоление расстояния. Это,
Горизонтальная скорость VH= пройденное расстояние/затраченное время
Для объекта, движущегося в движении снаряда, объект связан с двумя компонентами скорости: горизонтальной составляющей по оси x ‘V Cosθ’ в направлении движения и вертикальной составляющей по оси y ‘V Sinθ’, действующей вверх. при ускорении вверх, а затем вниз по отрицательной оси Y при ускорении по направлению к земле.
Из приведенного выше графика, чтобы вычислить горизонтальную скорость, которая является постоянной и в направлении оси x, компонент косинуса по тригонометрии равен
Cosθ=соседний/гипотенуза=горизонтальная скорость/начальная скорость
Cosθ=VH/V
VH= V Cos θ — (12)
Вышеупомянутое соотношение показывает уравнение для определения горизонтальной скорости независимо от времени.
Пример: Мяч подбрасывается в воздух и движется по параболической траектории под углом 60 °.0 с поверхности Земли. Если начальная скорость мяча равна 5 м / с, найдите горизонтальную скорость мяча.
Дано: θ = 600
Начальная скорость u = 5 м / с
Используя уравнение,
VH=VCosθ
=5*Кос(60)
=5*1/2=2.5 м/с
Следовательно, горизонтальная скорость мяча составляет 2.5 м / с.
Дальность полета снаряда — это расстояние, которое объект преодолеет от своей начальной точки, которая находится в точке (0,0) на приведенном выше графике, в зависимости от горизонтальной скорости объекта и того, как долго объект находится в воздухе.
То есть,
Р=ВHTf-(Один)
Где R — диапазон, ВH — горизонтальная скорость объекта, а Tf время полета.
Время, необходимое объекту во время движения снаряда, чтобы вернуться на землю при y = 0, упоминается как время полета.
Выведем уравнение для времени пролета, используя уравнение прямолинейного движения, приведенное ниже.
V=U+at—(14)
Начальная скорость объекта U=VSinθ
Конечная скорость V Cosθ =0
И a = -g, поскольку ускорение находится в отрицательной оси y.
Уравнение становится,
V= V Sinθ –gt
С момента финала скорость равна нулю,
0= VSinθ –gt
V Sinθ =gt
t=V Sinθ/g — (15)
Это время, необходимое объекту для достижения максимальной высоты во время полета.
Это означает, что время достижения максимальной высоты будет равно времени, необходимому объекту для покрытия оставшейся половины полета.
Значит, время для полета
Tf=2 В Sinθ/g — (16)
Подставляя уравнение (12) и уравнение (16) в уравнение (13),
R=V Cosθ*2V Sinθ/g
Р=В2/г* 2SinθCosθ
Р=В2 Sin2θ/g — (17)
Следовательно, скорость движущегося снаряда объекта также равна
V=√Rg/Sin2θ — (18)
Скорость может быть рассчитана путем измерения дальности полета и угла, который объект составляет относительно земли.
Подробнее о Снаряд Движение.
Как найти центростремительную скорость без учета времени?
Объект, движущийся по круговой траектории со временем, приобретает центростремительную скорость.
Направление скорости объекта по круговой траектории остается касательным к окружности и перпендикулярно центростремительной силе, направленной к центру.
Рассмотрим объект массы m, ускоряющийся по круговой траектории из-за внешней силы, приложенной к объекту. Центростремительная сила, действующая на объект, прямо пропорциональна квадрату, умноженному на скорость, достигаемую объектом, и обратно пропорциональна расстоянию от объекта до центра круга. Приложенная сила равна центростремительной силе, действующей на объект.
Ф=Фc
ма=мв2/r
а=в2/r
v2=ар
v=√ar—(19)
Скорость объекта при круговом движении равна квадратному корню из ускорения объекта и радиуса круговой траектории и не зависит от времени.
Пример: Представьте машину, движущуюся по круговой дорожке за пределами футбольной площадки с ускорением 40 км / ч. Диаметр земли 80 метров. Найдите скорость автомобиля.
Given: a=40km h=40*1000/60*60=11.1m/s
d=80м, r=80/2=40м
v=√ар
=√11.1 м/с*40 м
=√444
= 21.1 м / с2
=75.96 км/ч~ 76 км/ч
Следовательно, скорость автомобиля, разгоняющегося по круговой траектории, составляет 76 км / ч.
Подробнее о Как найти скорость с ускорением: разные подходы, проблемы, примеры.
Часто задаваемые вопросы
Q1. Две девушки играют в передачу с мячом; одна девушка бросает мяч высоко в воздух, образуя угол 450 с направлением горизонтальной скорости передача мяча девушке, стоящей на расстоянии 10 м от нее. Какая скорость набирает мяч при броске?
Дано: θ = 450
Дальность полета мяча на броске R = 10 метров
Р=В2 без2θг
V=√Rg sin2θ
V=√10*9.8/Sin(2*60)
V=√98/Sin(120)
V=√98/0.86
V=√113.95
V=10.67 м/с
Следовательно, скорость мяча во время полета составляет 10.67 м / с.
Какая средняя скорость?
Ускоряющийся объект меняет направление скорости и скорости вместе с определенной продолжительностью времени.
Сумма всех скоростей, изменяющихся во времени, деленная на общее количество изменений, называется средней скоростью.
1. Формулы максимальной высоты и времени за которое тело поднялось на максимальную высоту
h max
— максимальная высота достигнутая телом за время t
Vк — конечная скорость тела на пике, равная нулю
Vн — начальная скорость тела
t — время подъема тела на максимальную высоту h
g ≈ 9,8 м/с2 — ускорение свободного падения
Формула максимальной высоты (h max):
Формула времени за которое тело достигло максимальную высоту (t):
2. Формулы скорости, высоты и времени тела брошенного вертикально вверх под воздействием силы тяжести
h — расстояние пройденное телом за время t
Vн — начальная скорость тела
V — скорость тела в момент времени t
t — время подъема за которое тело пролетело расстояние h
g ≈ 9,8 м/с2 — ускорение свободного падения
Формула скорости тела в момент времени t (V):
Формула начальной скорости тела (Vн):
Формулы высоты тела в момент времени t (h):
Формулы времени, за которое тело достигло высоту h (t):
- Подробности
-
Опубликовано: 04 августа 2015
-
Обновлено: 13 августа 2021
Если тело бросить горизонтально с некоторой высоты, оно будет одновременно падать и двигаться вперед. Это значит, что оно будет менять положение относительно двух осей: ОХ и ОУ. Относительно оси ОХ тело будет двигаться с постоянной скоростью, а относительно ОУ — с постоянным ускорением.
Кинематические характеристики движения
Важные факты!
Графически движение горизонтально брошенного тела описывается следующим образом:
- Вектор скорости горизонтально брошенного тела направлен по касательной к траектории его движения.
- Проекция начальной скорости на ось ОХ равна v0: vox = v0. Ее проекция на ось ОУ равна нулю: voy = 0.
- Проекция мгновенной скорости на ось ОХ равна v0: vx = v0. Ее проекция на ось ОУ равна нулю: vy = –gt.
- Проекция ускорения свободного падения на ось ОХ равна нулю: gx = 0. Ее проекция на ось ОУ равна –g: gy = –g.
Модуль мгновенной скорости в момент времени t можно вычислить по теореме Пифагора:
Подставив в эту формулу значения проекций мгновенной скорости в момент времени t, получим:
Минимальная скорость в течение всего времени движения равна начальной скорости: vmin = v0.
Максимальной скорости тело достигает в момент приземления. Поэтому максимальной скоростью тела в течение всего времени движения является его конечная скорость: vmax = v.
Время падения — время, в течение которого перемещалось тело до момента приземления. Его можно выразить через формулу высоты при равноускоренном прямолинейном движении:
h0 — высота, с которой тело бросили в горизонтальном направлении.
Дальность полета — перемещение тела относительно ОХ. Обозначается буквой l. Так как относительно ОХ тело движется с постоянной скоростью, для вычисления дальности полета можно использовать формулу перемещения при равномерном прямолинейном движении:
l = sx = v0tпад
Выразив время падения через высоту и ускорение свободного падения, формула для определения дальности полета получает следующий вид:
Горизонтальное смещение тела — смещение тела вдоль оси ОХ. Вычислить горизонтальное смещение тела в любой момент времени t можно по формуле координаты x:
Учитывая, что x0 = 0, и проекция ускорения свободного падения на ось ОХ тоже равна нулю, а проекция начальной скорости есть модуль этой скорости, данная формула принимает вид:
x = v0t
Мгновенная высота — высота, на которой находится тело в выбранный момент времени t. Она вычисляется по формуле координаты y:
Пример №1. Из окна, расположенного 5 м от земли, горизонтально брошен камень, упавший на расстоянии 8 м от дома. С какой скоростью был брошен камень?
Так как нам известна высота места бросания и дальность полета, начальную скорость тела можно вычислить по формуле:
Выразим начальную скорость и вычислим ее:
Горизонтальный бросок тела с горы
Горизонтальный бросок тела с горы — частный случай горизонтального броска. От него он отличается увеличенным расстоянием между местом бросания и местом падения. Это увеличение появляется потому, что плоскость находится под наклоном. И чем больше этот наклон, тем больше времени требуется телу, чтобы приземлиться.
График горизонтального броска тела с горы
α — угол наклона плоскости к горизонту, s — расстояние от места бросания до места падения
Дальность полета — смещение тела относительно оси ОХ от места бросания до места падения. Она равна произведению расстояния от места бросания до места падения и косинуса угла наклона плоскости к горизонту:
l = s • cosα
Начальная высота — высота, с которой было брошено тело. Обозначается h0. Начальная высота равна произведению расстояния от места бросания до места падения и синусу угла наклона плоскости к горизонту:
h0 = s sinα
Пример №2. На горе с углом наклона 30о бросают горизонтально мяч с начальной скоростью 15 м/с. На каком расстоянии от точки бросания вдоль наклонной плоскости он упадет?
Выразим это расстояние через дальность полета:
Дальность полета выражается по формуле:
Подставим ее в формулу для вычисления расстояния от точки бросания до точки падения:
Выразим с учетом формулы начальной высоты:
Преобразуем:
Поделим обе части выражения на общий множитель s:
Подставим известные значения:
Задание EF18083
Шарик, брошенный горизонтально с высоты H с начальной скоростью υ0, за время t пролетел в горизонтальном направлении расстояние L (см. рисунок).
В другом опыте на этой же установке шарик массой 2m бросают со скоростью 2υ0.
Что произойдёт при этом с временем полёта, дальностью полёта и ускорением шарика? Сопротивлением воздуха пренебречь. Для каждой величины определите соответствующий характер её изменения:
- увеличится
- уменьшится
- не изменится
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Алгоритм решения
- Записать формулы для каждой из величин.
- Определить, как зависит эта физическая величина от начальной скорости и массы.
- Определить характер изменения физической величины при увеличении начальной скорости и массы шарика.
Решение
Время полета тела, брошенного горизонтально, определяется формулой:
Исходя из формулы, время никак не зависит от начальной скорости и массы тела. Поэтому оно при увеличении начальной скорости и массы вдвое никак не изменится.
Дальность полета тела, брошенного горизонтально, определяется формулой:
Исходя из формулы, дальность полета зависит от начальной скорости прямо пропорционально. Поэтому, если начальная скорость тела будет увеличена вдвое, дальность полета тоже увеличится (вдвое). От массы дальность полета никак не зависит.
Ускорение свободного падения — величина постоянная для нашей планеты. Поэтому изменение начальной скорости никак не повлияет на него. Ускорение не изменится.
Значит, верный ответ — 313.
Ответ: 313
pазбирался: Алиса Никитина | обсудить разбор
Задание EF18048
Шарик, брошенный горизонтально с высоты H с начальной скоростью υ0, за время t пролетел в горизонтальном направлении расстояние L (см. рисунок).
Что произойдёт с временем полёта, дальностью полёта и ускорением шарика, если на этой же установке уменьшить начальную скорость шарика в 2 раза? Сопротивлением воздуха пренебречь. Для каждой величины определите соответствующий характер её изменения:
- увеличится
- уменьшится
- не изменится
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Алгоритм решения
- Записать формулы для каждой из величин.
- Определить, как зависит эта физическая величина от начальной скорости.
- Определить характер изменения физической величины при уменьшении начальной скорости.
Решение
Время полета тела, брошенного горизонтально, определяется формулой:
Исходя из формулы, время никак не зависит от начальной скорости. Поэтому оно при уменьшении начальной скорости вдвое не изменится.
Дальность полета тела, брошенного горизонтально, определяется формулой:
Исходя из формулы, дальность полета зависит от начальной скорости прямо пропорционально. Поэтому, если начальная скорость тела будет уменьшена вдвое, дальность полета тоже уменьшится (вдвое).
Ускорение свободного падения — величина постоянная для нашей планеты. Поэтому изменение начальной скорости никак не повлияет на него. Ускорение не изменится.
Значит, верный ответ — 323.
Ответ: 323
pазбирался: Алиса Никитина | обсудить разбор
Алиса Никитина | Просмотров: 18.2k