Как найти уравнение директрисы параболы с фокусом

Уравнение директрисы параболы

Содержание:

  • Что такое директриса параболы
  • Каноническое уравнение параболы
  • Уравнение директрисы параболы, если вершина не в пересечении осей координат

    • Алгоритм расчета
  • Фокус параболы
  • Примеры решения задач

Что такое директриса параболы

Определение

Директриса параболы — такая прямая, кратчайшее расстояние от которой до любой точки, принадлежащей параболе, точно такое же, как расстояние от этой точки до фокуса.

Вершина параболы — точка пересечения параболы с ее осью. Она считается началом системы координат, канонической для данной кривой.

Вершина — середина перпендикуляра, опущенного из фокуса на директрису. Таким образом, директриса перпендикулярна оси симметрии и проходит на расстоянии р/2 от вершины параболы. Число р — фокальный параметр, расстояние от фокуса до директрисы. Поскольку все параболы подобны, именно эта характеристика определяет масштаб конкретной параболы.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Каноническое уравнение параболы

Каноническое уравнение параболы:

(y^2;=;2px)

Парабола

 

Если расположить параболу слева от оси ординат, уравнение примет вид:

(y^2;=;-;2px)

Парабола отрицательное уравнение

 

Уравнение директрисы параболы, если вершина не в пересечении осей координат

Формула директрисы параболы имеет вид:

(х;=;-frac р2)

Если вершину перенести в точку ((x_0;;y_0)), отличную от начала осей координат, каноническое уравнение примет вид:

({(y;-;y_0)}^2;=;2p;times;(x;-;x_0))

Алгоритм расчета

  1. Если уравнение параболы приведено в виде квадратного многочлена, перенесем все слагаемые с y в левую часть уравнения, а с х — в правую.
  2. Упростим выражение, выделив полный квадрат относительно одной из переменных.
  3. Введем новые переменные ((x_1;;y_1)), чтобы привести уравнение к каноническому виду, ведя при этом отсчет с новой точки начала координат.
  4. Вычислим параметр р и фокус, запишем уравнение директрисы.
  5. Вернемся к старым координатам, заменив ((x_1;;y_1)) на х и y.

Фокус параболы

Определение

Расстояние от точки фокуса (F) до любой точки параболы равняется расстоянию от этой точки к директрисе.

Фокус параболы

 

Чтобы составить уравнение директрисы, нужно знать фокальный параметр.

Определение

Фокальный параметр — половина длины хорды, проходящей через её фокус перпендикулярно фокальной оси.

Примеры решения задач

Задача №1

Составить уравнение директрисы параболы (y^2;=;6x).

Решение

Сравнив каноническое уравнение с данным, получим:

(2р = 6 )

(р = 3)

(frac р2;=;frac32)

Уравнение директрисы — (х;=;-frac р2.)

В данном случае оно будет выглядеть так:

(х;=;-;frac32)

Задача №2

Найти директрису параболы, заданной уравнением (4х^2;-;12х;+;y;+;6;=;0.)

Решение

Преображаем многочлен, находим полный квадрат относительно переменной х:

(4х^2;-;12х;+;y;+;6;=;0;Rightarrow;4(х^2;-;3х);+;y;+;6;=;0;Rightarrow;;4((х^2;-;2;timesfrac32х;+;frac94);-;frac94);+;y;+;6;=;0;Rightarrow;)

(;Rightarrow;(4;{(х;-;frac32)}^2;-;9;+;y;+;6;=;0;Rightarrow;y;-;3;=-;4;{(х;-;frac32)}^2;Rightarrow;{(х;-;frac32)}^2;=;-;frac14;(y;-;3))

Пусть ((y — 3)) будет (y_1), а ((х;-;frac32))(х_1).

Тогда, перенеся начало координат в точку ((x_1;;y_1)), получим каноническое уравнение (х_1^2;=;-{textstylefrac14}y_1).

(2р;=;frac14;Rightarrow;р;=;frac18;Rightarrow;frac р2;=;frac1{16})

Тогда уравнение директрисы — (y_1=;frac1{16}).

Заменив (y_1) на ((y — 3)), получим уравнение: (y;–;3;=;frac1{16})

Следовательно, (y;–;frac{49}{16};=;0).

В старой системе координат уравнение директрисы:

(16у — 49 = 0, у;=;frac{49}{16}).

Насколько полезной была для вас статья?

Рейтинг: 3.17 (Голосов: 18)

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Текст с ошибкой:

Расскажите, что не так

Поиск по содержимому

  1. Парабола, её форма, фокус и директриса.

    Начать изучение

  2. Свойства параболы.

    Начать изучение

  3. Уравнение касательной к параболе.

    Начать изучение

Парабола, её форма, фокус и директриса.

Определение.

Параболой называется линия, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением
$$
y^{2}=2pxlabel{ref15}
$$
при условии (p > 0).

Из уравнения eqref{ref15} вытекает, что для всех точек параболы (x geq 0). Парабола проходит через начало канонической системы координат. Эта точка называется вершиной параболы.

Форма параболы известна из курса средней школы, где она встречается в качестве графика функции (y=ax^{2}). Отличие уравнений объясняется тем, что в канонической системе координат по сравнению с прежней оси координат поменялись местами, а коэффициенты связаны равенством (2p=a^{-1}).

Фокусом параболы называется точка (F) с координатами ((p/2, 0)) в канонической системе координат.

Директрисой параболы называется прямая с уравнением (x=-p/2) в канонической системе координат ((PQ) на рис. 8.11).

парабола

Рис. 8.11. Парабола.

Свойства параболы.

Утверждение.

Расстояние от точки (M(x, y)), лежащей на параболе, до фокуса равно
$$
r=x+frac{p}{2}.label{ref16}
$$

Доказательство.

Вычислим квадрат расстояния от точки (M(x, y)) до фокуса по координатам этих точек: (r^{2}=(x-p/2)^{2}+y^{2}) и подставим сюда (y^{2}) из канонического уравнения параболы. Мы получаем
$$
r^{2}=left(x-frac{p}{2}right)^{2}+2px=left(x+frac{p}{2}right)^{2}.nonumber
$$
Отсюда в силу (x geq 0) следует равенство eqref{ref16}.

Заметим, что расстояние от точки (M) до директрисы также равно
$$
d=x+frac{p}{2}.nonumber
$$

Следовательно, мы можем сделать следующий вывод.

Утверждение.

Для того чтобы точка (M) лежала на параболе, необходимо и достаточно, чтобы она была одинаково удалена от фокуса и от директрисы этой параболы.

Доказательство.

Докажем достаточность. Пусть точка (M(x, y)) одинаково удалена от фокуса и от директрисы параболы:
$$
sqrt{left(x-frac{p}{2}right)^{2}+y^{2}}=x+frac{p}{2}.nonumber
$$

Возводя это уравнение в квадрат и приводя в нем подобные члены, мы получаем из него уравнение параболы eqref{ref15}. Это заканчивает доказательство.

Параболе приписывается эксцентриситет (varepsilon=1). В силу этого соглашения формула
$$
frac{r}{d}=varepsilonnonumber
$$
верна и для эллипса, и для гиперболы, и для параболы.


Уравнение касательной к параболе.

Выведем уравнение касательной к параболе в точке (M_{0}(x_{0}, y_{0})), лежащей на ней. Пусть (y_{0} neq 0). Через точку (M_{0}) проходит график функции (y=f(x)), целиком лежащий на параболе. (Это (y=sqrt{2px}) или же (y=-sqrt{2px}), смотря по знаку (y_{0}).) Для функции (f(x)) выполнено тождество ((f(x))^{2}=2px), дифференцируя которое имеем (2f(x)f'(x)=2p). Подставляя (x=x_{0}) и (f(x_{0})=y_{0}), находим (f'(x_{0})=p/y_{0}) Теперь мы можем написать уравнение касательной к параболе
$$
y-y_{0}=frac{p}{y_{0}}(x-x_{0}).nonumber
$$
Упростим его. Для этого раскроем скобки и вспомним, что (y_{0}^{2}=2px_{0}). Теперь уравнение касательной принимает окончательный вид
$$
yy_{0}=p(x+x_{0}).label{ref17}
$$

Заметим, что для вершины параболы, которую мы исключили, положив (y_{0} neq 0), уравнение eqref{ref17} превращается в уравнение (x=0), то есть в уравнение касательной в вершине. Поэтому уравнение eqref{ref17} справедливо для любой точки на параболе.

Утверждение.

Касательная к параболе в точке (M_{0}) есть биссектриса угла, смежного с углом между отрезком, который соединяет (M_{0}) с фокусом, и лучом., выходящим из этой точки в направлении оси параболы (рис. 8.12).

Доказательство.

касательная к параболе
Рис. 8.12. Касательная к параболе.

Рассмотрим касательную в точке (M_{0}(x_{0}, y_{0})). Из уравнения eqref{ref17} получаем ее направляющий вектор (boldsymbol{v}(y_{0}, p)). Значит, ((boldsymbol{v}, boldsymbol{e}_{1})=y_{0}) и (cos varphi_{1}=y_{0}/boldsymbol{v}). Вектор (overrightarrow{FM_{0}}) имеет компоненты (x_{0}=p/2) и (y_{0}), а потому
$$
(overrightarrow{FM_{0}}, boldsymbol{v})=x_{0}y_{0}-frac{p}{2}y_{0}+py_{0}=y_{0}(x_{0}+frac{p}{2}).nonumber
$$
Но (|overrightarrow{FM_{0}}|=x_{0}+p/2). Следовательно, (cos varphi_{2}=y_{0}/|boldsymbol{v}|). Утверждение доказано.

Заметим, что (|FN|=|FM_{0}|) (см. рис. 8.12).

Парабола: формулы, примеры решения задач

Определение параболы. Параболой называется множество всех точек плоскости, таких, каждая из которых находится на одинаковом расстоянии от точки, называемой фокусом, и от прямой, называемой директрисой и не проходящей через фокус.

Каноническое уравнение параболы имеет вид:

,

где число p, называемое параметром параболы, есть расстояние от фокуса до директрисы.

На чертеже линия параболы — бордового цвета, директриса — ярко-красного цвета, расстояния от точки до фокуса и директрисы — оранжевого.

В математическом анализе принята другая запись уравнения параболы:

то есть ось параболы выбрана за ось координат. Можно заметить, что ax² — это квадратный трёхчлен ax² + bx + c , в котором b = 0 и c = 0 . График любого квадратного трёхчлена, то есть левой части квадратного уравнения, будет параболой.

Фокус параболы имеет координаты

Директриса параболы определяется уравнением .

Расстояние r от любой точки параболы до фокуса определяется формулой .

Для каждой из точек параболы расстояние до фокуса равно расстоянию до директрисы.

Пример 1. Определить координаты фокуса параболы

Решение. Число p расстояние от фокуса параболы до её директрисы. Начало координат в данном случае — в роли любой точки, расстояния от которой от фокуса до директрисы равны. Находим p:

Находим координаты фокуса параболы:

Пример 2. Составить уравнение директрисы параболы

Решение. Находим p:

Получаем уравнение директрисы параболы:

Пример 3. Составить уравнение параболы, если расстояние от фокуса до директрисы равно 2.

Решение. Параметр p — это и есть данное расстояние от фокуса до директрисы. Подставляем и получаем:

Траектория камня, брошенного под углом к горизонту, летящего футбольного мяча или артиллерийского снаряда будет параболой (при отсутствии сопротивления воздуха). Зона достижимости для пущенных камней вновь будет параболой. В данном случае речь идёт об огибающей кривой траекторий камней, выпущенных из данной точки под разными углами, но с одной и той же начальной скоростью.

Парабола обладает следующим оптическим свойством: все лучи, исходящие из источника света, находящегося в фокусе параболы, после отражения оказываются направленными параллельно её оси. Это свойство параболы используется при изготовлении прожекторов, автомобильных фар, карманных фонариков, зеркала которых имеют вид параболоидов вращения (фигур, получающихся при вращении параболы вокруг оси). Пучок параллельных лучей, двигающийся вдоль оси параболы, отражаясь, собирается в её фокусе.

Парабола

Парабола, её форма, фокус и директриса.

Параболой называется линия, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением
$$
y^<2>=2pxlabel
$$
при условии (p > 0).

Из уравнения eqref вытекает, что для всех точек параболы (x geq 0). Парабола проходит через начало канонической системы координат. Эта точка называется вершиной параболы.

Форма параболы известна из курса средней школы, где она встречается в качестве графика функции (y=ax^<2>). Отличие уравнений объясняется тем, что в канонической системе координат по сравнению с прежней оси координат поменялись местами, а коэффициенты связаны равенством (2p=a^<-1>).

Фокусом параболы называется точка (F) с координатами ((p/2, 0)) в канонической системе координат.

Директрисой параболы называется прямая с уравнением (x=-p/2) в канонической системе координат ((PQ) на рис. 8.11).

Рис. 8.11. Парабола.

Свойства параболы.

Расстояние от точки (M(x, y)), лежащей на параболе, до фокуса равно
$$
r=x+frac

<2>.label
$$

Вычислим квадрат расстояния от точки (M(x, y)) до фокуса по координатам этих точек: (r^<2>=(x-p/2)^<2>+y^<2>) и подставим сюда (y^<2>) из канонического уравнения параболы. Мы получаем
$$
r^<2>=left(x-frac

<2>right)^<2>+2px=left(x+frac

<2>right)^<2>.nonumber
$$
Отсюда в силу (x geq 0) следует равенство eqref.

Заметим, что расстояние от точки (M) до директрисы также равно
$$
d=x+frac

<2>.nonumber
$$

Следовательно, мы можем сделать следующий вывод.

Для того чтобы точка (M) лежала на параболе, необходимо и достаточно, чтобы она была одинаково удалена от фокуса и от директрисы этой параболы.

Докажем достаточность. Пусть точка (M(x, y)) одинаково удалена от фокуса и от директрисы параболы:
$$
sqrt<left(x-frac

<2>right)^<2>+y^<2>>=x+frac

<2>.nonumber
$$

Возводя это уравнение в квадрат и приводя в нем подобные члены, мы получаем из него уравнение параболы eqref. Это заканчивает доказательство.

Параболе приписывается эксцентриситет (varepsilon=1). В силу этого соглашения формула
$$
frac=varepsilonnonumber
$$
верна и для эллипса, и для гиперболы, и для параболы.

Уравнение касательной к параболе.

Выведем уравнение касательной к параболе в точке (M_<0>(x_<0>, y_<0>)), лежащей на ней. Пусть (y_ <0>neq 0). Через точку (M_<0>) проходит график функции (y=f(x)), целиком лежащий на параболе. (Это (y=sqrt<2px>) или же (y=-sqrt<2px>), смотря по знаку (y_<0>).) Для функции (f(x)) выполнено тождество ((f(x))^<2>=2px), дифференцируя которое имеем (2f(x)f'(x)=2p). Подставляя (x=x_<0>) и (f(x_<0>)=y_<0>), находим (f'(x_<0>)=p/y_<0>) Теперь мы можем написать уравнение касательной к параболе
$$
y-y_<0>=frac

>(x-x_<0>).nonumber
$$
Упростим его. Для этого раскроем скобки и вспомним, что (y_<0>^<2>=2px_<0>). Теперь уравнение касательной принимает окончательный вид
$$
yy_<0>=p(x+x_<0>).label
$$

Заметим, что для вершины параболы, которую мы исключили, положив (y_ <0>neq 0), уравнение eqref превращается в уравнение (x=0), то есть в уравнение касательной в вершине. Поэтому уравнение eqref справедливо для любой точки на параболе.

Касательная к параболе в точке (M_<0>) есть биссектриса угла, смежного с углом между отрезком, который соединяет (M_<0>) с фокусом, и лучом., выходящим из этой точки в направлении оси параболы (рис. 8.12).

Рассмотрим касательную в точке (M_<0>(x_<0>, y_<0>)). Из уравнения eqref получаем ее направляющий вектор (boldsymbol(y_<0>, p)). Значит, ((boldsymbol, boldsymbol_<1>)=y_<0>) и (cos varphi_<1>=y_<0>/boldsymbol). Вектор (overrightarrow>) имеет компоненты (x_<0>=p/2) и (y_<0>), а потому
$$
(overrightarrow>, boldsymbol)=x_<0>y_<0>-frac

<2>y_<0>+py_<0>=y_<0>(x_<0>+frac

<2>).nonumber
$$
Но (|overrightarrow>|=x_<0>+p/2). Следовательно, (cos varphi_<2>=y_<0>/|boldsymbol|). Утверждение доказано.

Заметим, что (|FN|=|FM_<0>|) (см. рис. 8.12).

Парабола — определение и вычисление с примерами решения

Парабола:

Определение: Параболой называется геометрическое место точек равноудаленных от выделенной точки F, называемой фокусом параболы, и прямой (l), называемой директрисой.

Получим каноническое уравнение параболы. Выберем декартову систему координат так, чтобы фокус F лежал на оси абсцисс, а директриса проходила бы через точку, расположенную симметрично фокусу, перпендикулярно к оси абсцисс (Рис. 34). Пусть точка M(х; у) принадлежит параболе: Вычислим расстояния от точки M(х; у) до фокуса и директрисы

Рис. 34. Парабола, (уравнение директрисы.

Возведем обе части уравнения в квадрат

Раскрывая разность квадратов, стоящую в правой части уравнения, получим каноническое уравнение параболы: (а также аналогичные ему, см. Рис. 35а и Рис. 356).

Рис. 35а. Параболы и их уравнения.

Рис. 356. Параболы и их уравнения.

Найдем координаты точек пересечения параболы с координатными осями:

  • — точка пересечения параболы с осью абсцисс;
  • — точка пересечения параболы с осью ординат.

Определение: Точка О(0; 0) называется вершиной параболы.

Если точка М(х; у) принадлежит параболе, то ей принадлежат и точка следовательно, парабола симметрична относительно оси абсцисс.

Пример:

Дано уравнение параболы Определить координаты фокуса параболы и составить уравнение параболы.

Решение:

Так как из уравнения параболы следует, что следовательно, Таким образом, фокус этой параболы лежит в точке а уравнение директрисы имеет вид

Пример:

Составить каноническое уравнение параболы, фокус которой лежит на оси Ох слева от начала координат, а параметр р равен расстоянию от фокуса гиперболы до её асимптоты.

Решение:

Для определения координат фокусов гиперболы преобразуем её уравнение к каноническому виду.

Гипербола:

Следовательно, действительная полуось гиперболы а мнимая полуось — Гипербола вытянута вдоль оси абсцисс Ох. Определим расположение фокусов данной гиперболы Итак, Вычислим расстояние от фокуса до асимптоты которое равно параметру р:

Следовательно, каноническое уравнение параболы, фокус которой лежит на оси Ох слева от начала координат имеет вид:

Пример:

Составить каноническое уравнение параболы, фокус которой совпадает с одним из фокусов эллипса Написать уравнение директрисы.

Решение:

Для определения координат фокусов эллипса преобразуем его уравнение к каноническому виду. Эллипс:

Следовательно, большая полуось эллипса а малая полуось Так как , то эллипс вытянут вдоль оси абсцисс Ох. Определим расположение фокусов данного эллипса Итак, Так как фокус параболы совпадает с одним из фокусов или эллипса, то параметр р найдем из равенства уравнение параболы имеет вид Директриса определяется уравнением

Уравнение параболоида вращения

Пусть вертикальная парабола

расположенная в плоскости Охz, вращается вокруг своей оси (ось Oz). При вращении получается поверхность, носящая название параболоида вращения (рис. 207).

Для вывода уравнения поверхности рассмотрим произвольную точку параболоида вращения, и пусть эта точка получена в результате вращения точки N(X, 0, Z) данной параболы вокруг точки С(0, 0, Z).

Так как точки М и N расположены в одной и той же горизонтальной плоскости и CN = СМ как радиусы одной и той же окружности, то имеем

Подставляя формулы (2) в уравнение (1), получим уравнение параболоида вращения

Заметим, что форму параболоида вращения имеет поверхность ртути, находящейся в вертикальном цилиндрическом сосуде, быстро вращающемся вокруг своей оси. Это обстоятельство используют в технике для получения параболических зеркал.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар
  • Четырехугольник
  • Многогранники
  • Окружность
  • Эллипс
  • Гипербола

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

источники:

http://univerlib.com/analytic_geometry/second_order_lines_and_surfaces/parabola/

http://www.evkova.org/parabola

Определение.
Параболой называется множество точек
плоскости, каждая из которых находится
на одинаковом расстоянии от данной
точки F,
называемой фокусом, и данной прямой l,
не проходящей через фокус, называемой
директрисой.

Для
вывода уравнения параболы за ось Ox
примем прямую, проходящую через фокус
F
перпендикулярно директрисе l.
За положительное направление оси абсцисс
возьмём направление от директрисы к
фокусу. За начало координат возьмем
точку O,
которая делит пополам отрезок от
директрисы до фокуса. Длину этого отрезка
обозначим через P
и назовем фокальным параметром параболы.

Тогда
фокус F
имеет координаты
,
а точка A
оси Ox,
через которую проходит директриса l,
имеет
координаты
.
Возьмем произвольную точку M(x,y)
параболы и соединим ее с фокусом F,
а затем опустим перпендикуляр MN
на директрису l.
При этом длину отрезка MN
обозначим через r
и назовем фокальным радиусом точки M,
а длину отрезка MN
обозначим d.
Тогда по определению параболы имеем:

.

Замечание:
По аналогии с эллипсом и гиперболой
число
,
назовем директрисой параболы. Так как
r=d,
то для параболы
.

Теорема.
Пусть прямоугольная декартова система
координат Oxy
выбрана указанным выше способом. Тогда
в этой системе координат парабола имеет
каноническое уравнение:
.

Доказательство.

Пусть
M(x;y)
– произвольная точка параболы,

– фокус,

или

– уравнение директрисы. Тогда имеем:



;

— расстояние от точки M(x,y)
до прямой l,
причем x≥0.


.


.

Теорема
доказана.

§19. Исследование уравнения параболы

Пусть
парабола задана каноническим уравнением:



(1)

1. Ось и вершина

Так
как уравнение (1) содержит переменную


во второй степени, то оно не изменится
при замене

на
,
следовательно, парабола симметрична
относительно оси абсцисс Ox.

Других
осей симметрии и центра симметрии у
параболы нет.

С
осью Ox
парабола пересекается в начале координат,
так как при

имеем и
.

Определение.
Ось симметрии параболы называется ее
осью, точка пересечения параболы с осью
называется ее вершиной.

2. Расположение относительно оси и директрисы

Так
как

(расстояние), то из (1) имеем:
.
Следовательно, парабола расположена
относительно оси Oy,
а следовательно, и относительно и
директрисы по ту же сторону, что и фокус.
Если
,
то
.
Следовательно, при неограниченном
удалении от вершины парабола неограниченно
удаляется от оси.

3. Фокальная хорда

Определение.
Фокальной называется хорда, проходящая
через фокус параболы перпендикулярно
ее оси.

Покажем,
что ее длина равна удвоенному фокальному
параметру:


4. Другие виды уравнения параболы

1)

.

2)

.

3)

.

4)

.

5)

.

Oˡ(x0;y0)
– вершина параболы.

§20. Уравнения эллипса, гиперболы и параболы в полярных координатах

Теорема
1.

Эллипс, отличный от окружности, гипербола
и парабола являются множествами точек
плоскости, для которых отношение
расстояния до данной точки F
к расстоянию до данной прямой l
есть величина постоянная.

Замечания.

1)
Для эллипса и гиперболы теорема 1
непосредственно следует из теоремы о
директрисах, причем F
– один из фокусов, l
– ближайшая к этому фокусу директриса.
Для параболы теорема 1 следует из ее
определения, где F
– фокус параболы, l
– ее директриса;

2)
Указанное отношение расстояний есть
эксцентриситет линии;

3)
Окружность не имеет директрис, так как
Ɛ=0
и
.

Теорема
2.

Эллипс, гипербола, парабола, эксцентриситетами
Ɛ
имеют в некоторой полярной системе
координат уравнение:


.
(1)

Доказательство.

Примем
за полюс фокус F
соответствующей линии, полярную ось
проведем через фокус F
перпендикулярно соответствующей
директрисе l
в направлении от l
к F.

Пусть
M
– произвольная точка линии, M0
– точка линии, для которой
;
обозначим FM0
через p
– фокальный параметр точки M0.


;

Согласно
теореме 1 имеем:



Замечания.

1)
Для параболы Ɛ=1,
p
– фокальный параметр, тогда парабола
имеет полярное уравнение
.

2)
Для эллипса и гиперболы — уравнениям



и (2)


,
(3)

получаем:

.

Например,
для уравнения (2) имеем:
=p
– фокальный параметр, тогда для точки
M0
эллипса имеем:


.

Для
окружности Ɛ=0
и ее полярное уравнение принимает вид:

,
где p
– радиус окружности,
.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Парабола — это график функции описанный определённой формулой. Чтобы построить параболу нужно следовать формуле, определениям и уравнениям.

Парабола

Парабола – это множество точек плоскости, которые равноотделённые  от заданной точки, что называется фокусом и заданной прямой под названием директриса.

Чтобы получить каноническое уравнение параболы, расположим директрису перпендикулярно оси OX, а фокус F на оси OX так, чтобы начало координат O(0, 0) помещался на одинаковом расстоянии от них (см. рис. 1). Обозначим через p расстояние от фокуса к директрисе, тогда у фокуса будут координаты {x} = {pover{2}}, y = 0, F({pover{2}}, 0).

Для произвольной точки M (x, y) параболы расстояний FM = r, а расстояние к директрисе MN = d. По определению d = r из рис. 1 видим, что d = {x} + {pover{2}}, а {r} = sqrt{x - {pover{2}}^2} + y^2 и поэтому:

Парабола

Рис. 1

sqrt{(x - {pover{2}})^2 + y^2} = x + {pover{2}}to{x}^2 - 2 * {pover2}}x + {p^2over{4}} + y^2 = x^2 + 2 * {pover{2}}x + {p^2over{4}}

y^2 = 2px

(1)

– каноническое уравнение параболы.

Нужна помощь в написании работы?

Написание учебной работы за 1 день от 100 рублей. Посмотрите отзывы наших клиентов и узнайте стоимость вашей работы.

Подробнее

Что такое вершина параболы

Вершина параболы – это парабола, которая проходит через точки O (0, 0). Если точка M_{1}(x , y) принадлежит параболе, то и M_{2}(x , -y) тоже принадлежит параболе, так как из:

y^2 = 2pxto{(-y)^2 = 2px}.

Значит, парабола симметрична относительно оси OX, её график достаточно построить в первой четверти, где из канонического уравнения параболы получается, что:

y = sqrt{2px}

Чтобы найти вершину параболы, необходимо знать формулу: ax^2 + bx + c = 0.

Давайте посмотрим, как данная формула действует, допустим дано уравнение:

y^2 = x^2 + 9x + 18

Тогда:

a = 1, b = 9, c = 18.  Чтобы найти величины a, b и c, в квадратном уравнении коэффициент при x^2 = a, при x = b, постоянная (коэффициент без переменной) = c. Если взять тот же пример, y^2 = x^2 + 9x + 18, получается, что:

x = {-bover{2a}}, x = {-9over{2 * 1}}, x = {-9over{2}}.

Форма и характеристики параболы

Исследуем за каноническим уравнением форму и расположение параболы:

1. В уравнении y^2 = 2px переменная входит в парной степени откуда получается, что парабола симметрична относительно оси OX.  Ось OX – это ось, которая симметрична параболе.

2. Так как p > 0, тогда xgeq{0}, откуда получается, что парабола расположена справа от оси Oy.

3. При x = 0 мы имеем y = 0, то есть парабола проходит через начало координат. Точка O(0, 0) – это вершина параболы.

4. При увеличении значений переменной x модуль y тоже возрастает. Изобразим параболу на рисунке:

Возрастание параболы

Рис. 2

5. В полярной системе координат, у канонического уравнения параболы такой вид:

{r} = {pover{1 - cosvarphi}}

6. Уравнение y^2 = - 2px, x^2 = 2py, x^2 = -2py (p > 0), тоже описывают параболы:

Парабола

Рис. 3

Оптическое свойство параболы

У параболы “оптическое” свойство, если: в фокусе параболы поместить источник света, тогда отбитые от параболы лучи будут параллельными оси OX. Это свойство учитывают при изготовлении прожекторов, зеркальных телескопов, теле- и радио антенн.

При положительном p уравнении:

y = - 2px

описывают параболу симметричную относительно OX с вершиной в точке O(0, 0), ветви которой направлены влево (рис. 3 (а)).

Аналогично изложенному, уравнение x^2 = 2py и x^2 = -2py описывают параболы с вершиной в точке O(0, 0) симметрично относительно OY, ветви которой направлены соответственно вверх и вниз (см. рис. 3 (б) и (в)). Если например, уравнение x^2 = 2py решить относительно y

y = {1over{2p}}x^2  и обозначить {1over{2p}} = a, тогда получим известное со школьного курса уравнение параболы y = ax^2. Теперь её фокусное расстояние {pover{2}} = {1over{4a}}.

Примеры решения

Задача

Найти координаты фокуса и составить уравнение директрисы параболы y^2 = 6x.

Решение

Сравнивая каноническое уравнение y^2 = 2px и данное y^2 = 6x, получим 2p = 6to{p = 3, {pover{2}} = {3over{2}}, тогдаF ({3over{2}}, 0). Так как уравнение директрисы x = -{pover{2}}, тогда в данном случае x = -{3over{2}}.

Ответ

координаты фокуса: F ({3over{2}}, 0), а уравнение директрисы параболы: x = -{3over{2}}.

Задача

Составить каноническое уравнение параболы:

а) с фокусом в точке F(2, 0);

б) с фокусом в точке F(0, -6).

Решение

а). Так как фокус F(2, 0) на положительной полуоси OX, тогда парабола симметрична относительно OX с вершиной в точке O(0, 0) и {pover{2}} = 2, поэтому p = 4 и согласно формуле (1) y^2 = 8x.

б). Фокус F(0, -6) лежит на отрицательной полуоси OY с вершиной в точке O(0, 0), ветви направлены вниз, каноническое уравнение следует искать в виде x^2 = -2py. Фокусное расстояние параболы |OF| = {pover{2}} = 6to{p} = 12 и уравнение запишется x^2 = -24y.

Ответ

а) каноническое уравнение параболы с фокусом в точке F(2, 0):  y^2 = 8x;

б) каноническое уравнение с фокусом в точке F(0, -6): x^2 = -24y.

Задача

Показать путём выделения полного квадрата, что уравнение 4x^2 - 12x + y + 6 = 0 – это уравнение параболы. Привести его к каноническому виду. Найти вершину, фокус, ось и директрису этой параболы.

Решение

Выделим относительно переменной x полный квадрат

(4x^2 - 12x) + y + 6 = 0to{4(x^2 - 3x)} + y + 6 = 0to{4((x^2 - 2 * {3over{2}}x + {9over{4}}) - {9over{4}}) + y + 6 = 0}to{4((x - {3over{2}}})^2 - 9 + y + 6 = 0to{y - 3 = -4(x - {3over{2}})^2}to{(x - {3over{2}})^2} = -{1over{4}}(y - 3).

Обозначим y_{1} = y - 3, x_{1} = x - {3over{2}}.  Тогда в результате параллельного переноса координатных осей в новое начало, то есть в точку O_{1}({3over{2}}, 3), получим каноническое уравнение параболы {x_{1}^2} = -{1over{4}}y_{1}.

Ветви этой параболы направлены вниз симметрично относительно оси O_{1}Y_{1}, 2p = {1over{4}}to{p} = {1over{8}}, {pover{2}} = -{1over{16}} – фокусное расстояние. В новой системе координат фокус находится в точке F(0, -{1over{16}}), уравнение директрисы в новой системе y_{1} = {1over{16}}.

Повернёмся к старым координатам при помощи замены y_{1} = y - 3, x_{1} = x - {3over{2}}. Уравнение оси в новой системе x_{1} = 0, а в старой x - {3over{2}} = 0to {2x - 3 = 0} – уравнение оси параболы.

Уравнение директрисы в новой системе координат y_{1} = {1over{16}}, а в старой y - 3 = {1over{16}}to{y - {49over{16}}} = 0to{16y - 49} = 0.

В новой системе X_{1}O_{1}Y_{1} для фокуса F(0, -{1over{16}}) x_{1} = 0, y_{1} = -{1over{16}}, а в старой системе x_{F} - {3over{2}} = 0to{x_{F}} = {3over{2}}, y_{F} - 3 = -{1over{16}}to{y_{F} = -{1over{16}} + 3to{y_{F}} = {47over{16}}, то есть F({3over{2}}, {47over{16}}).

Ответ

Каноническое уравнение параболы – {x_{1}^2} = -{1over{4}}y_{1};

вершина – ветви параболы направлены вниз;

O_{1}Y_{1}, 2p = {1over{4}}to{p} = {1over{8}}, p_{2} = -{1over{16}} – фокусное расстояние, а фокус находится в точке F(0, -{1over{16}});

уравнение оси x_{1} = 0;

уравнение директрисы y_{1} = {1over{16}}.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как можно найти дешевле мебель
  • Как исправить тепловоз
  • Обувь стаптывается во внутрь у взрослого как исправить
  • Как исправить криво подстриженные волосы
  • Как исправить информацию в дубль гис

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии