Как найти ускорение авто


Загрузить PDF


Загрузить PDF

Ускорение характеризует быстроту изменения скорости движущегося тела.[1]
Если скорость тела остается постоянной, то оно не ускоряется. Ускорение имеет место только в том случае, когда скорость тела меняется. Если скорость тела увеличивается или уменьшается на некоторую постоянную величину, то такое тело движется с постоянным ускорением. [2]
Ускорение измеряется в метрах в секунду за секунду (м/с2) и вычисляется по значениям двух скоростей и времени или по значению силы, приложенной к телу.

  1. Изображение с названием Calculate Acceleration Step 1

    1

    Формула для вычисления среднего ускорения. Среднее ускорение тела вычисляется по его начальной и конечной скоростям (скорость – это быстрота передвижения в определенном направлении) и времени, которое необходимо телу для достижения конечной скорости. Формула для вычисления ускорения: a = Δv / Δt, где а – ускорение, Δv – изменение скорости, Δt – время, необходимое для достижения конечной скорости.[3]

    • Единицами измерения ускорения являются метры в секунду за секунду, то есть м/с2.
    • Ускорение является векторной величиной, то есть задается как значением, так и направлением.[4]
      Значение – это числовая характеристика ускорения, а направление – это направление движения тела. Если тело замедляется, то ускорение будет отрицательным.
  2. Изображение с названием Calculate Acceleration Step 2

    2

    Определение переменных. Вы можете вычислить Δv и Δt следующим образом: Δv = vк — vн и Δt = tк — tн, где vк – конечная скорость, vн – начальная скорость, tк – конечное время, tн – начальное время.[5]

    • Так как ускорение имеет направление, всегда вычитайте начальную скорость из конечной скорости; в противно случае направление вычисленного ускорения будет неверным.
    • Если в задаче начальное время не дано, то подразумевается, что tн = 0.
  3. Изображение с названием Calculate Acceleration Step 3

    3

    Найдите ускорение при помощи формулы. Для начала напишите формулу и данные вам переменные. Формула: a = Δv / Δt = (vк — vн)/(tк — tн). Вычтите начальную скорость из конечной скорости, а затем разделите результат на промежуток времени (изменение времени). Вы получите среднее ускорение за данный промежуток времени.

    • Если конечная скорость меньше начальной, то ускорение имеет отрицательное значение, то есть тело замедляется.
    • Пример 1: автомобиль разгоняется с 18,5 м/с до 46,1 м/с за 2,47 с. Найдите среднее ускорение.
      • Напишите формулу: a = Δv / Δt = (vк — vн)/(tк — tн)
      • Напишите переменные: vк = 46,1 м/с, vн = 18,5 м/с, tк = 2,47 с, tн = 0 с.
      • Вычисление: a = (46,1 — 18,5)/2,47 = 11,17 м/с2.
    • Пример 2: мотоцикл начинает торможение при скорости 22,4 м/с и останавливается через 2,55 с. Найдите среднее ускорение.
      • Напишите формулу: a = Δv / Δt = (vк — vн)/(tк — tн)
      • Напишите переменные: vк = 0 м/с, vн = 22,4 м/с, tк = 2,55 с, tн = 0 с.
      • Вычисление: а = (0 — 22,4)/2,55 = -8,78 м/с2.

    Реклама

  1. Изображение с названием Calculate Acceleration Step 4

    1

    Второй закон Ньютона. Согласно второму закону Ньютона тело будет ускоряться, если силы, действующие на него, не уравновешивают друг друга. Такое ускорение зависит от результирующей силы, действующей на тело.[6]
    Используя второй закон Ньютона, вы можете найти ускорение тела, если вам известна его масса и сила, действующая на это тело.

    • Второй закон Ньютона описывается формулой: Fрез = m x a, где Fрез – результирующая сила, действующая на тело, m – масса тела, a – ускорение тела.
    • Работая с этой формулой, используйте единицы измерения метрической системы, в которой масса измеряется в килограммах (кг), сила в ньютонах (Н), а ускорение в метрах в секунду за секунду (м/с2).
  2. Изображение с названием Calculate Acceleration Step 5

    2

    Найдите массу тела. Для этого положите тело на весы и найдите его массу в граммах. Если вы рассматриваете очень большое тело, поищите его массу в справочниках или в интернете. Масса больших тел измеряется в килограммах.

    • Для вычисления ускорения по приведенной формуле необходимо преобразовать граммы в килограммы. Разделите массу в граммах на 1000, чтобы получить массу в килограммах.
  3. Изображение с названием Calculate Acceleration Step 6

    3

    Найдите результирующую силу, действующую на тело. Результирующая сила не уравновешивается другими силами. Если на тело действуют две разнонаправленные силы, причем одна из них больше другой, то направление результирующей силы совпадает с направлением большей силы.[7]
    Ускорение возникает тогда, когда на тело действует сила, которая не уравновешена другими силами и которая приводит к изменению скорости тела в направлении действия этой силы.

    • Например, вы с братом перетягиваете канат. Вы тянете канат с силой 5 Н, а ваш брат тянет канат (в противоположном направлении) с силой 7 Н. Результирующая сила равна 2 Н и направлена в сторону вашего брата.
    • Помните, что 1 Н = 1 кг∙м/с2.[8]
  4. Изображение с названием Calculate Acceleration Step 7

    4

    Преобразуйте формулу F = ma так, чтобы вычислить ускорение. Для этого разделите обе стороны этой формулы на m (массу) и получите: a = F/m. Таким образом, для нахождения ускорения разделите силу на массу ускоряющегося тела.

    • Сила прямо пропорциональна ускорению, то есть чем больше сила, действующая на тело, тем быстрее оно ускоряется.
    • Масса обратно пропорциональна ускорению, то есть чем больше масса тела, тем медленнее оно ускоряется.
  5. Изображение с названием Calculate Acceleration Step 8

    5

    Вычислите ускорение по полученной формуле. Ускорение равно частному от деления результирующей силы, действующей на тело, на его массу. Подставьте данные вам значения в эту формулу, чтобы вычислить ускорение тела.

    • Например: сила, равная 10 Н, действует на тело массой 2 кг. Найдите ускорение тела.
    • a = F/m = 10/2 = 5 м/с2

    Реклама

  1. 1

    Направление ускорения. Научная концепция ускорения не всегда совпадает с использованием этой величины в повседневной жизни. Помните, что у ускорения есть направление; ускорение имеет положительное значение, если оно направлено вверх или вправо; ускорение имеет отрицательное значение, если оно направлено вниз или влево. Проверьте правильность вашего решения, основываясь на следующей таблице:

      Движение автомобиля Изменение скорости Значение и направление ускорения
      Движется вправо (+) и ускоряется + → ++ (более положительное) Положительное
      Движется вправо (+) и замедляется ++ → + (менее положительное) Отрицательное
      Движется влево (-) и ускоряется — → — (более отрицательное) Отрицательное
      Движется влево (-) и замедляется — → — (менее отрицательное) Положительное
      Движется с постоянной скоростью Не меняется Равно 0
  2. Изображение с названием Calculate Acceleration Step 10

    2

    Направление силы. Помните, что ускорение всегда сонаправлено силе, действующей на тело. В некоторых задачах даются данные, цель которых заключается в том, чтобы ввести вас в заблуждение.

    • Пример: игрушечная лодка массой 10 кг движется на север с ускорением 2 м/с2. Ветер, дующий в западном направлении, действует на лодку с силой 100 Н. Найдите ускорение лодки в северном направлении.
    • Решение: так как сила перпендикулярна направлению движения, то она не влияет на движение в этом направлении. Поэтому ускорение лодки в северном направлении не изменится и будет равно 2 м/с2.
  3. Изображение с названием Calculate Acceleration Step 11

    3

    Результирующая сила. Если на тело действуют сразу несколько сил, найдите результирующую силу, а затем приступайте к вычислению ускорения. Рассмотрим следующую задачу (в двумерном пространстве):

    Реклама

  • Владимир тянет (справа) контейнер массой 400 кг с силой 150 Н. Дмитрий толкает (слева) контейнер с силой 200 Н. Ветер дует справа налево и действует на контейнер с силой 10 Н. Найдите ускорение контейнера.
  • Решение: условие этой задачи составлено так, чтобы запутать вас. На самом деле все очень просто. Нарисуйте схему направления сил, так вы увидите, что сила в 150 Н направлена вправо, сила в 200 Н тоже направлена вправо, а вот сила в 10 Н направлена влево. Таким образом, результирующая сила равна: 150 + 200 — 10 = 340 Н. Ускорение равно: a = F/m = 340/400 = 0,85 м/с2.

Об этой статье

Эту страницу просматривали 190 509 раз.

Была ли эта статья полезной?

Ускорение автомобиля

Одним из важнейших показателей
динамических качеств автомобиля является
интенсивность разгона — ускорение.

При изменении
скорости движения возникают силы
инерции, которые автомобилю необходимо
преодолеть для обеспечения заданного
ускорения. Эти силы вызваны как
поступательно движущимися массами
автомобиля m, так и моментами инерции
вращающихся деталей двигателя, трансмиссии
и колес.

Для удобства
проведения расчетов пользуются
комплексным показателем — приведенными
силами инерции
:

где δвр
— коэффициент учета вращающихся масс.

Величина
ускорения j = dv/dt, которое может
развить автомобиль при движении по
горизонтальному участку дороги на
заданной передаче и с заданной скоростью,
находится в результате преобразования
формулы для определения запаса мощности,
которая расходуется на разгон:

,

или по
динамической характеристике:

D = f +.

Отсюда:
j = .

Для определения
ускорения на подъеме или спуске пользуются
формулой:

.

Способность
автомобиля к быстрому разгону особенно
важна в условиях городской езды.
Увеличенные ускорения для автомобиля
могут быть получены за счет увеличения
передаточного числа u0главной передачи и соответствующего
выбора характеристики изменения
крутящего момента двигателя.

Максимальное
ускорение при разгоне находится в
пределах:

— для легковых автомобилей на первой
передаче 2,0…3,5 м/с2;

— для легковых
автомобилей на прямой передаче 0,8…2,0
м/с2;

— для грузовых
автомобилей на второй передаче 1,8…2,8
м/с2;

— для грузовых
автомобилей на прямой передаче 0,4…0,8
м/с2.

Время и путь разгона автомобиля

Величина ускорения в ряде случаев не
является достаточно наглядным показателем
способности автомобиля к разгону. Для
этой цели удобно применять такие
показатели, как время и путь разгонадо заданной скорости и графики,
отображающие зависимость скорости от
времени и пути разгона.

Так как j
=
, тоdt =.

Отсюда путем
интегрирования полученного уравнения
находим время разгона tв заданном
интервале изменения скоростей отv1доv2:

.

Определение
пути разгона Sв заданном интервале
изменения скоростей осуществляют
следующим образом. Так как скорость
является первой производной пути по
времени, то дифференциал путиdS=v·dt,
или путь разгона в интервале изменения
скоростей отv1доv2равен:

.

В условиях
реальной эксплуатации автомобиля
затраты времени на операции переключения
передач и буксование сцепления увеличивают
время разгона по сравнению с теоретическим
(расчетным) его значением. Время,
затрачиваемое на переключение передач,
зависит от конструкции коробки передач.
При применении автоматической коробки
передач это время практически равно
нулю.

Кроме того,
разгон не все время происходит при
полной подаче топлива, как это
предполагается в изложенном методе.
Это также увеличивает реальное время
разгона.

При применении
механической коробки передач важным
моментом является правильный выбор
наиболее выгодных скоростей переключения
передач v1-2, v2-3и т.д. (см. раздел «Тяговый расчет
автомобиля»).

Для оценки
способности автомобиля к разгону в
качестве показателя используют также
время разгона после трогания с места
на пути в 100 и 500 м.


Построение графиков ускорений

В практических
расчетах принимают, что разгон происходит
на горизонтальной дороге с твердым
покрытием. Сцепление включено и не
пробуксовывает. Орган управления режимом
работы двигателя находится в положении
полной подачи топлива. При этом обеспечено
сцепление колес с дорогой без
пробуксовывания. Предполагается также,
что изменение параметров двигателя
происходит по внешней скоростной
характеристике.

Полагают,
что разгон для легковых автомобилей
начинается с минимально устойчивой
скорости на низшей передаче порядка v0= 1,5…2,0м/сдо значенийvт= 27,8м/с(100км/ч). Для грузовых
автомобилей принимают:vт= 16,7м/с(60км/ч).

Последовательно,
начиная со скорости v0=
1,5…2,0м/сна первой передачи и
последующих передачах, на динамической
характеристике (рис.1) для выбранных по
оси абсциссvрасчетных точек (не
менее пяти) определяют запас динамического
фактора при разгоне как разность ординат
(D – f)на различных передачах.
Коэффициент учета вращающихся масс
(δвр) для каждой передачи
подсчитывают по формуле:

δвр= 1,04 + 0,05·iкп2.

Ускорения
автомобиля определяют по формуле:

j = .

По полученным
данным строят графики ускорений j=f(v)(рис.2).

Рис.2.
Характеристика ускорений автомобиля.

При правильном расчете и построении
кривая ускорений на высшей передаче
пересечет абсциссу в точке максимальной
скорости. Достижение максимальной
скорости происходит при полном
использовании запаса динамического
фактора: D – f = 0.

Построение графика времени разгона
t = f(v)

Этот график
строят, используя график ускорения
автомобиля j=f(v)(рис.2). Шкалу скоростей
графика разгона разбивают на равные
участки, например, через каждый 1м/с,
и из начала каждого участка проводят
перпендикуляры до пересечения с кривыми
ускорения (рис.3).

Площадь каждой из полученных элементарных
трапеций в принятом масштабе равна
времени разгона для данного участка
скорости, если считать, что на каждом
участке скорости разгон происходит с
постоянным (средним) ускорением:

jср= (j1
+ j
2)/2,

где j1
, j
2— ускорения соответственно
в начале и в конце рассматриваемого
участка скоростей,м/с2.

В данном расчете не учитывается время
на переключение передач и другие факторы,
приводящие к завышению времени разгона.
Поэтому вместо среднего ускорения
принимают ускорение jiв
начале произвольно взятого участка
(определяют по шкале).

С учетом
сделанного допущения время разгонана каждом участке приращения скоростиΔvопределится как:

ti=Δv/ji,с.

Рис. 3. Построение
графика времени разгона

По полученным
данным строят график времени разгона
t = f(v). Полное время разгона отv0до значенийvтопределяют
как сумму времени разгона (с нарастающим
итогом) по всем участкам:

t1=Δv/j1 ,t2=t1 +(Δv/j2),t3= t2 +(Δv/j3)и так далее доtтконечного
времени разгона:

.

При построении
графика времени разгона удобно
пользоваться таблицей и принять Δv= 1м/с.

Участки скорости
vi
, м/с

№ участков

1

2

3

4

5

6

7

и
т.д.

ji
, м/с
2

ti
, с

Врем
разгона с нарастающим итогом

Напомним,
что построенный (теоретический) график
разгона (рис.4) отличается от действительного
тем, что не учтено реальное время на
переключение передач. На рис.4 время
(1,0 с) на переключение передач
отображено условно для иллюстрации
момента переключения.

При
использовании механической (ступенчатой)
трансмиссии на автомобиле действительный
график времени разгона характеризуется
потерей скорости в моменты переключения
передач. Это также увеличивает время
на разгон. У автомобиля с коробкой
передач с синхронизаторами интенсивность
разгона выше. Наибольшая интенсивность
у автомобиля с автоматической
бесступенчатой трансмиссией.

Время разгона отечественных легковых
автомобилей малого класса с места до
скорости 100 км/ч(28м/с) составляет
порядка 13…20с. Для автомобилей
среднего и большого класса оно не
превышает 8…10с.

Рис.
4. Характеристика разгона автомобиля
по времени.

Время разгона грузовых автомобилей до
скорости 60 км/ч(17м/с) составляет
35…45си выше, что свидетельствует
о недостаточной их динамичности.

Путь разгона для легковых автомобилей
до скорости 100 км/чсоставляет 500…800м.

Сравнительные данные по времени разгона
автомобилей отечественного и зарубежного
производства приведены в табл. 3.4.

Таблица 3.4.

Время разгона
легковых автомобилей до скорости 100км/ч
(28 м/с)

Автомобиль

Время,
с

Автомобиль

Время,
с

ВАЗ-2106
1,6 (74)

17,5

Alfa
Romeo-156 2,0 (155)

9,0

ВАЗ-2121
1,6 (74)

25

Audi
A6 Tdi 2,5 (150)

9,5

Москвич
2,0 (113)

11,5

BMW-320i
2,0 (150)

9,9

ЗИЛ-117

13

Cadillac
Sevilie 4,6 (395)

7,2

ГАЗель-3302
D 2,1 (95)

24

Mercedes
S 220 CD (125)

11,0

ЗАЗ-1102
1,1 (51)

16,2

Peugeot-406
3.0 (191)

7,9

ВАЗ-2110
1,5 (94)

12,0

Porsche-911
3,4 (300)

5,2

Ford
Focus 2,0 (130)

9,2

VW
Polo Sdi 1,7 (60)

17,4

Fiat
Marea 2,0 (147)

8,8

Honda
Civic 1,6 (160)

8,0

Примечание:
Рядом с типом автомобиля указан рабочий
объем (л)
и мощность (в скобках) двигателя (л.с.).

Построение графика пути разгона
автомобиля
S
= f(v)

Аналогичным
образом проводится графическое
интегрирование раннее построенной
зави­симости
t
=
f(V)
для получения зависимости пути разгона
S
от скорости автомобиля.
В
данном случае кривая графика
времени разгона автомобиля
(рис. 5) разбивается на интервалы по
вре­мени,
для каждого из которых находятся
соответствующие значения Vcр
k.

Рис.5. Схема,
поясняющая использование графика
времени разгона автомобиля

t
=
f(V)
для
построения графика пути разгона
S
= f(
V).

Площадь
элементарного прямоугольника, например,
в интервале Δt5
есть
путь, который проходит автомобиль от
отметки t4
до отметки t5,
двигаясь
с постоянной скоростью Vcр
5.

Величина
площади элементарного прямоугольника
определяется сле­дующим
образом:

ΔSk
= Vcр
k
(t
k

t
k-1)
= Vcр
k
·
Δ
t
k
.

где k
= l…m
— порядковый номер интервала, m
выбирается произвольно, но считается
удобным для расчета, когда m
= n.

Например (рис. 5), если Vср5
=12,5 м/с;
t
4
=10 с;
t5
=14 с,
то ΔS5
= 12,5(14 — 10) = 5 м.

Путь разгона от скорости
V0
до скорости V1
: S1
= ΔS1;

до скорости V2
: S2
= ΔS1
+ ΔS2;

до скорости Vn
: Sn
= ΔS1
+ ΔS2
+ … + ΔSn
=
.

Результаты расчета заносятся
в таблицу и представляются в виде
гра­фика (рис. 6).

Путь разгона для легковых автомобилей
до скорости 100 км/чсоставляет 300…600м. Для грузовых автомобилей путь
разгона до скорости 50км/чравен
150…300м.

Рис.6. Графика
пути
разгона
автомобиля.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Скорость, время и ускорение

Расчеты

Три этих физических величины взаимосвязаны между собой процессом движения. Если известны две из этих величин, можно найти третью.
Скорость тела при условии равноускоренного прямолинейного движения определяем по формуле:

V = V0 + а*t

V0 — начальная скорость (при t = 0);
а — ускорение;
t — время.

Итак, чтобы найти скорость, к начальной скорости прибавляем произведение ускорения на время.
Если V0 = 0, то V = а*t.

Чтобы найти время, нужно вначале найти разность между скоростью в данный момент и начальной скоростью, затем полученный результат разделить на ускорение.

t = (V — V0) / а

Ускорение показывает изменение скорости движущегося тела, рассчитывается по двум скоростям и времени. Чтобы вычислить ускорение, следует найти разницу между скоростью в данный момент и начальной скоростью, затем все это разделить на время.
При ускорении:

а = (V — V0) / t

При торможении:

а = (V0 — V) / t

Ускорение — величина векторная, которая задается не только числом, но и направлением, измеряется в метрах в секунду (м/с2).

Чтобы рассчитать среднее ускорение, находим разницу между начальной и конечной скоростями Δv, полученный результат делим на разницу между временем Δt.(начальным и конечным) :

а = Δv / Δt

Быстро и правильно рассчитать величину скорости, ускорения или найти время вам поможет онлайн калькулятор.

Расчет скорости, времени и ускорения

  • Равноускоренное прямолинейное движение — движение по прямой линии с постоянным ускорением (a=const).
  • Ускорение — векторная физическая величина, показывающая изменение скорости тела за 1 с. Обозначается как a.
  • Единица измерения ускорения — метр в секунду в квадрате (м/с2).
  • Акселерометр — прибор для измерения ускорения.

Формула ускорения

Ускорение тела равно отношению изменения вектора скорости ко времени, в течение которого это изменение произошло:

v — скорость тела в данный момент времени, v0 — скорость тела в начальный момент времени, t — время, в течение которого изменялась скорость

Пример №1. Состав тронулся с места и через 20 секунд достиг скорости 36 км/ч. Найти ускорение его разгона.

Сначала согласуем единицы измерения. Для этого переведем скорость в м/с: умножим километры на 1000 и поделим на 3600 (столько секунд содержится в 1 часе). Получим 10 м/с.

Начальная скорость состава равно 0 м/с, так как изначально он стоял на месте. Имея все данные, можем подставить их в формулу и найти ускорение:

Проекция ускорения

Проекция ускорения на ось ОХ

vx — проекция скорости тела в данный момент времени, v0x — проекция скорости в начальный момент времени, t — время, в течение которого изменялась скорость

Знак проекции ускорения зависит от того, в какую сторону направлен вектор ускорения относительно оси ОХ:

  • Если вектор ускорения направлен в сторону оси ОХ, то его проекция положительна.
  • Если вектор ускорения направлен в сторону, противоположную направлению оси ОХ, его проекция отрицательная.

При решении задач на тему равноускоренного прямолинейного движения проекции величин можно записывать без нижнего индекса, так как при движении по прямой тело изменяет положение относительно только одной оси (ОХ). Их обязательно нужно записывать, когда движение описывается относительно двух и более осей.

Направление вектора ускорения

Направление вектора ускорения не всегда совпадает с направлением вектора скорости!

Равноускоренным движением называют такое движение, при котором скорость за одинаковые промежутки времени изменяется на одну и ту же величину. При этом направления векторов скорости и ускорения тела совпадают (а↑↑v).

Равнозамедленное движение — частный случай равноускоренного движения, при котором скорость за одинаковые промежутки времени уменьшается на одну и ту же величину. При этом направления векторов скорости и ускорения тела противоположны друг другу (а↑↓v).

Пример №2. Автомобиль сначала разогнался, а затем затормозил. Во время разгона направления векторов его скорости и ускорения совпадают, так как скорость увеличивается. Но при торможении скорость уменьшается, потому что вектор ускорения изменил свое направление в противоположную сторону.

График ускорения

График ускорения — график зависимости проекции ускорения от времени. Проекция ускорения при равноускоренном прямолинейном движении не изменяется (ax=const). Графиком ускорения при равноускоренном прямолинейном движении является прямая линия, параллельная оси времени.

Зависимость положения графика проекции ускорения относительно оси ОХ от направления вектора ускорения:

  • Если график лежит выше оси времени, движение равноускоренное (направление вектора ускорения совпадает с направлением оси ОХ). На рисунке выше тело 1 движется равноускорено.
  • Если график лежит ниже оси времени, движение равнозамедленное (вектор ускорения направлен противоположно оси ОХ). На рисунке выше тело 2 движется равнозамедлено.

Если график ускорения лежит на оси времени, движение равномерное, так как ускорение равно 0. Скорость в этом случае — величина постоянная.

Чтобы сравнить модули ускорений по графикам, нужно сравнить степень их удаленности от оси времени независимо от того, лежат они выше или ниже нее. Чем дальше от оси находится график, тем больше его модуль. На рисунке график 2 находится дальше от оси времени по сравнению с графиком один. Поэтому модуль ускорения тела 2 больше модуля ускорения тела 1.

Пример №3. По графику проекции ускорения найти участок, на котором тело двигалось равноускорено. Определить ускорение в момент времени t1 = 1 и t2 = 3 с.

В промежуток времени от 0 до 1 секунды график ускорения рос, с 1 до 2 секунд — не менялся, а с 2 до 4 секунд — опускался. Так как при равноускоренном движении ускорение должно оставаться постоянным, ему соответствует второй участок (с 1 по 2 секунду).

Чтобы найти ускорение в момент времени t, нужно мысленно провести перпендикулярную прямую через точку, соответствующую времени t. От точки пересечения с графиком нужно мысленно провести перпендикуляр к оси проекции ускорения. Значение точки, в которой пересечется перпендикуляр с этой осью, покажет ускорение в момент времени t.

В момент времени t1 = 1с ускорение a = 2 м/с2. В момент времени t2 = 3 ускорение a = 0 м/с2.

Задание EF18774

На рисунке показан график зависимости координаты x тела, движущегося вдоль оси Ох, от времени t (парабола). Графики А и Б представляют собой зависимости физических величин, характеризующих движение этого тела, от времени t. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.

К каждой позиции графика подберите соответствующую позицию утверждения и запишите в поле цифры в порядке АБ.


Алгоритм решения

  1. Определить, какому типу движения соответствует график зависимости координаты тела от времени.
  2. Определить величины, которые характеризуют такое движение.
  3. Определить характер изменения величин, характеризующих это движение.
  4. Установить соответствие между графиками А и Б и величинами, характеризующими движение.

Решение

График зависимости координаты тела от времени имеет вид параболы в случае, когда это тело движется равноускоренно. Так как движение тела описывается относительно оси Ох, траекторией является прямая. Равноускоренное прямолинейное движение характеризуется следующими величинами:

  • перемещение и путь;
  • скорость;
  • ускорение.

Перемещение и путь при равноускоренном прямолинейном движении изменяются так же, как координата тела. Поэтому графики их зависимости от времени тоже имеют вид параболы.

График зависимости скорости от времени при равноускоренном прямолинейном движении имеет вид прямой, которая не может быть параллельной оси времени.

График зависимости ускорения от времени при таком движении имеет вид прямой, перпендикулярной оси ускорения и параллельной оси времени, так как ускорение в этом случае — величина постоянная.

Исходя из этого, ответ «3» можно исключить. Остается проверить ответ «1». Кинетическая энергия равна половине произведения массы тела на квадрат его скорости. Графиком квадратичной функции является парабола. Поэтому ответ «1» тоже не подходит.

График А — прямая линия, параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости ускорения от времени (или его модуля). Поэтому первая цифра ответа — «4».

График Б — прямая линия, не параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости скорости от времени (или ее проекции). Поэтому вторая цифра ответа — «2».

Ответ: 24

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17992

Начальная скорость автомобиля, движущегося прямолинейно и равноускоренно, равна 5 м/с. После прохождения расстояния 40 м его скорость оказалась равной 15 м/c. Чему равно ускорение автомобиля?


Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу, связывающую известные из условия задачи величины.
  3. Выразить из формулы искомую величину.
  4. Вычислить искомую величину, подставив в формулу исходные данные.

Решение

Запишем исходные данные:

  • Начальная скорость v0 = 5 м/с.
  • Конечная скорость v = 15 м/с.
  • Пройденный путь s = 40 м.

Формула, которая связывает ускорение тела с пройденным путем:

Так как скорость растет, ускорение положительное, поэтому перед ним в формуле поставим знак «+».

Выразим из формулы ускорение:

Подставим известные данные и вычислим ускорение автомобиля:

Ответ: 2,5

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18202

Внимательно прочитайте текст задания и выберите верный ответ из списка. На рисунке приведён график зависимости проекции скорости тела vx от времени.

Какой из указанных ниже графиков  совпадает с графиком зависимости от времени проекции ускорения этого тела ax в интервале времени от 6 с до 10 с?


Алгоритм решения

  1. Охарактеризовать движение тела на участке графика, обозначенном в условии задачи.
  2. Вычислить ускорение движение тела на этом участке.
  3. Выбрать график, который соответствует графику зависимости от времени проекции ускорения тела.

Решение

Согласно графику проекции скорости в интервале времени от 6 с до 10 с тело двигалось равнозамедленно. Это значит, что проекция ускорения на ось ОХ отрицательная. Поэтому ее график должен лежать ниже оси времени, и варианты «а» и «в» заведомо неверны.

Чтобы выбрать между вариантами «б» и «г», нужно вычислить ускорение тела. Для этого возьмем координаты начальной и конечной точек рассматриваемого участка:

  • t1 = 6 с. Этой точке соответствует скорость v1 = 0 м/с.
  • t2 = 10 с. Этой точке соответствует скорость v2 = –10 м/с.

Используем для вычислений следующую формулу:

Подставим в нее известные данные и сделаем вычисления:

Этому значению соответствует график «г».

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18027

На графике приведена зависимость проекции скорости тела от времени при прямолинейном движении по оси х. Определите модуль ускорения тела.


Алгоритм решения

  1. Записать формулу ускорения.
  2. Записать формулу для вычисления модуля ускорения.
  3. Выбрать любые 2 точки графика.
  4. Определить для этих точек значения времени и проекции скорости (получить исходные данные).
  5. Подставить данные формулу и вычислить ускорение.

Решение

Записываем формулу ускорения:

По условию задачи нужно найти модуль ускорения, поэтому формула примет следующий вид:

Выбираем любые 2 точки графика. Пусть это будут:

  • t1 = 1 с. Этой точке соответствует скорость v1 = 15 м/с.
  • t2 = 2 с. Этой точке соответствует скорость v2 = 5 м/с.

Подставляем данные формулу и вычисляем модуль ускорения:

Ответ: 10

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 13.9k

Ускорение, разгон, инерция. Автомобиль набирает скорость

Красный свет светофора сменился желтым, затем зеленым. С напряженным ревом срываются с места машины, затем звук двигателей на мгновение стихает — это водители отпустили педаль подачи топлива и переключают передачи, снова разгон, снова момент затишья и опять разгон. Только метров через 100 после перекрестка поток машин как бы успокаивается и плавно катит до следующего светофора. Лишь один старый автомобиль «Москвич» прошел перекресток ровно и бесшумно. На рисунке видно, как он обогнал все автомобили и вырвался далеко вперед. Этот автомобиль подъехал к перекрестку как раз в тот момент, когда зажегся зеленый сигнал светофора, водителю не пришлось тормозить и останавливать машину, не пришлось после этого снова брать разгон. Как же получается, что один автомобиль (да еще маломощный «Москвич» старого выпуска) легко, без напряжения движется со скоростью около 50 км/час, в то время как другие с явным напряжением постепенно набирают скорость и достигают скорости 50 км/час далеко после перекрестка, когда «Москвич» уже приближается к следующему светофору? Очевидно, что для равномерного движения требуется значительно меньше усилий и расхода мощности, чем при разгоне или, как говорят, при ускоренном движении.

Sravnitel no slaby j avtomobil mozhet obognat bolee moshhny e esli on podhodit k perekrestku v moment vklyucheniya zelenogo sveta i ne zatrachivaet usilij na troganie s mesta i razgon

Рис. Сравнительно слабый автомобиль может обогнать более мощные, если он подходит к перекрестку в момент включения зеленого света и не затрачивает усилий на трогание с места и разгон.

Но прежде чем изучать разгон автомобиля, нужно вспомнить некоторые понятия.

Ускорение автомобиля

Если автомобиль проходит в каждую секунду одинаковое число метров, движение называется равномерным или установившимся. Если пройденный автомобилем путь в каждую секунду (скорость) изменяется, движение называется:

Приращение скорости в единицу времени называют ускорением, уменьшение скорости в единицу времени — отрицательным ускорением, или замедлением.

Ускорение измеряют приростом или убыванием скорости (в метрах в секунду) за 1 сек. Если за секунду скорость увеличивается на 3 м/сек, ускорение равно 3 м/сек в секунду или 3 м/сек/сек или 3 м/сек2.

Ускорение обозначают буквой j.

Ускорение, равное 9,81 м/сек2 (или округленно, 10 м/сек2), соответствует ускорению, которое, как известно из опыта, имеет свободно падающее тело (без учета сопротивления воздуха), и называется ускорением силы тяжести. Его обозначают буквой g.

Разгон автомобиля

Разгон автомобиля обычно изображают графически. На горизонтальной оси графика откладывают путь, а на вертикальной — скорость и наносят точки, соответствующие каждому пройденному отрезку пути. Вместо скорости на вертикальной шкале можно откладывать время разгона, как это показано на графике разгона отечественных автомобилей.

Grafik puti razgona

График разгона представляет собой кривую с постепенно убывающим углом наклона. Уступы кривой соответствуют моментам переключения передач, когда ускорение на какой-то момент падает, однако их часто не показывают.

Инерция

Автомобиль не может с места развить сразу большую скорость, потому что ему приходится преодолевать не только силы сопротивления движению, но и инерцию.

Инерция — это свойство тела сохранять состояние покоя или состояние равномерного движения. Из механики известно, что неподвижное тело может быть приведено в движение (или скорость движущегося тела изменена) только под действием внешней силы. Преодолевая действие инерции, внешняя сила изменяет скорость тела, иначе говоря, придает ему ускорение. Величина ускорения пропорциональна величине силы. Чем больше масса тела, тем большей должна быть сила для придания этому телу нужного ускорения. Масса — это величина, пропорциональная количеству вещества в теле; масса т равна весу тела G, деленному на ускорение силы тяжести g (9,81 м/сек2):

Масса автомобиля сопротивляется разгону с силой Pj, эту силу называют силой инерции. Чтобы разгон мог произойти, на ведущих колесах нужно создать дополнительно силу тяги, равную силе инерции. Значит, сила, необходимая для преодоления инерции тела и для придания телу определенного ускорения j, оказывается пропорциональной массе тела и ускорению. Эта сила равна:

Для ускоренного движения автомобиля требуется дополнительная затрата мощности:

Nj = Pj*Va / 75 = Gj*Va / 270*9,81 = Gj*Va / 2650, л.с.

Для точности расчетов в уравнения (31) и (32) следует включить множитель б («дельта») — коэффициент вращающихся масс, учитывающий влияние вращающихся масс автомобиля (особенно маховика двигателя и колес) на разгон. Тогда:

Grafiki vremeni razgona otechestvenny h avtomobilej

Рис. Графики времени разгона отечественных автомобилей.

Влияние вращающихся масс заключается в том, что, кроме преодоления инерции массы автомобиля, необходимо «раскрутить» маховик, колеса и другие вращающиеся части машины, затратив на это часть мощности двигателя. Величину коэффициента б можно считать приблизительно равной:

где ik — передаточное число в коробке передач.

Теперь, взяв для примера автомобиль с полным весом 2000 кг, нетрудно сравнить силы, необходимые для поддержания движения этого автомобиля по асфальту со скоростью 50 км/час (пока без учета сопротивления воздуха) и для трогания его с места с ускорением около 2,5 м/сек2, обычным для современных легковых автомобилей.

Для преодоления сопротивления инерции на высшей передаче (ik = 1) потребуется сила:

Такой силы на высшей передаче автомобиль не может развить, нужно включить первую передачу (с передаточным числом ik = 3).

Pj = 2000*2,5*1,5 / 9,81 = 760, кг

что для современных легковых автомобилей вполне возможно.

Итак, сила, необходимая для трогания с места, оказывается в 25 раз больше силы, необходимой для поддержания движения с постоянной скоростью 50 км/час.

Чтобы обеспечить быстрый разгон автомобиля, требуется устанавливать двигатель большой мощности. При движении с постоянной скоростью (кроме максимальной) двигатель работает не в полную мощность.

Из сказанного выше понятно, почему при трогании с места нужно включать низшую передачу. Попутно отметим, что на грузовых автомобилях обычно следует начинать разгон на второй передаче. Дело в том, что на первой передаче (ik примерно равно 7.) очень велико влияние вращающихся масс и тяговой силы не хватит, чтобы сообщить автомобилю большое ускорение; разгон получится очень медленным.

На сухой дороге при коэффициенте сцепления ф, равном около 0,7, трогание с места на низшей передаче не вызывает никаких затруднений, так как сила сцепления все еще превышает тяговую силу. Но на скользкой дороге может часто оказаться, что тяговая сила на низшей передаче больше силы сцепления (особенно при ненагруженном автомобиле), и колеса начинают буксовать. Из этого положения есть два выхода:

При разгоне особенно сказывается разгрузка передних колес и дополнительная нагрузка задних. Можно наблюдать, как в момент трогания с места автомобиль заметно, а иногда и очень резко «приседает» на задние колеса. Это перераспределение нагрузки происходит и при равномерном движении автомобиля. Оно объясняется противодействием вращающему моменту. Зубья ведущей шестерни главной передачи давят на зубья ведомой (коронной) и как бы прижимают заднюю ось к земле; при этом возникает реакция, отталкивающая ведущую шестерню вверх; происходит небольшое поворачивание всего заднего моста в направлении, обратном направлению вращения колес. Закрепленные на картере моста рессоры своими концами приподнимают переднюю часть рамы или кузова и опускают заднюю. Между прочим отметим, что именно вследствие разгрузки передних колес их легче повернуть во время движения автомобиля с включенной передачей, чем во время движения накатом, а тем более чем на стоянке. Это знает каждый водитель. Однако вернемся к дополнительно нагруженным задним колесам.

Дополнительная, прибавочная нагрузка на задние колеса Zd от передаваемого момента тем больше, чем больше момент Мк, подведенный к колесу и чем короче колесная база автомобиля L (в м):

Естественно, что эта нагрузка особенно велика при движении на низших передачах, так как подводимый к колесам момент увеличен. Так, на автомобиле ГАЗ-51 дополнительная нагрузка на первой передаче равна:

Во время трогания с места и разгона на автомобиль действует сила инерции Pj, приложенная в центре тяжести автомобиля и направленная назад, т. е. в сторону, обратную ускорению. Так как сила Pj приложена на высоте hg от плоскости дороги, она будет стремиться как бы опрокинуть автомобиль вокруг задних колес. При этом нагрузка на задние колеса увеличится, а на передние — уменьшится на величину:

Pri peredache usilij ot dvigatelya nagruzka na zadnie kolesa uvelichivaetsya a na perednie umen shaetsya

Рис. При передаче усилий от двигателя нагрузка на задние колеса увеличивается, а на передние — уменьшается.

Таким образом, при трогании с места на задние колеса и шины приходится нагрузка от веса автомобиля, от передаваемого увеличенного вращающего момента и от силы инерции. Эта нагрузка действует на подшипники заднего моста и главным образом на шины задних колес. Чтобы сберечь их, нужно троганье с места осуществлять как можно более плавно. Следует напомнить, что на подъеме задние колеса еще более нагружены. На крутом подъеме при трогании с места, да еще при высоком расположении центра тяжести автомобиля, может создаться такая разгрузка передних колес и перегрузка задних, которая приведет к повреждению шин и даже к опрокидыванию автомобиля назад.

Krome nagruzki ot tyagovogo usiliya pri razgone na zadnie kolesa dejstvuet dopolnitel naya sila ot inertsii massy avtomobilya

Рис. Кроме нагрузки от тягового усилия, при разгоне на задние колеса действует дополнительная сила от инерции массы автомобиля.

Автомобиль двигается с ускорением, и скорость движения его увеличивается, пока тяговая сила больше силы сопротивления движению. С увеличением скорости сопротивление движению возрастает; когда установится равенство тяговой силы и сопротивления, автомобиль приобретает равномерное движение, скорость которого зависит от величины нажима на педаль подачи топлива. Если водитель до отказа нажимает на педаль подачи топлива, эта скорость равномерного движения является одновременно и наибольшей скоростью автомобиля.

Работа по преодолению сил сопротивления качению и воздуха не создает запаса энергии — энергия расходуется на борьбу с этими силами. Работа по преодолению сил инерции при разгоне автомобиля переходит в энергию движения. Эту энергию называют кинетической энергией. Создающийся при этом запас энергии можно использовать, если после некоторого разгона отсоединить ведущие колеса от двигателя, установить рычаг переключения коробки передач в нейтральное положение, т. е. дать возможность автомобилю двигаться по инерции, накатом. Движение накатом происходит до тех пор, пока запас энергии не израсходуется на преодоление сил сопротивления движению. Уместно напомнить, что на одном и том же отрезке пути расход энергии на разгон гораздо больше расхода на преодоление сил сопротивления движению. Поэтому за счет накопленной энергии путь наката может быть в несколько раз больше пути разгона. Так, путь наката со скорости 50 км/час равен для автомобиля «Победа» около 450 м, для автомобиля ГАЗ-51 — около 720 м, в то время как путь разгона до этой скорости равен соответственно 150—200 м и 250—300 м Если водитель не стремится ехать на автомобиле с очень большой скоростью, он может значительную часть пути вести автомобиль «накатом» и экономить таким образом энергию и, тем самым, топливо.

Источник

Расчёт минимально возможного времени разгона

2e95bc6s 100

На написание данной статьи меня подтолкнуло следующее видео:

Используемые в нём расчёты основаны на школьном курсе физики.
Начнём с того, что время t разгона до заданной скорости v (например, до 100 км/ч) определяется по формуле

Вообще говоря, в силу разных причин ускорение меняется по мере разгона, но мы можем оценить его максимальную величину a_max, тем самым найдя минимально возможное время разгона t_min.

Согласно второму закону Ньютона ускорение a любого тела прямо пропорционально приложенной к телу силе F и обратно пропорционально его массе m:

Как известно, на ровной дороге автомобиль ускоряется за счёт силы трения между шинами и поверхностью дороги. Максимальная величина силы трения F_max определяется по формуле

F_max = μN, (3)
где
μ — коэффициент трения покоя (для большинства летних гражданских шин μ ≈ 1);
N — нормальная сила давления.

Заметим, что при пробуксовке ведущих колёс коэффициент трения покоя меняется на коэффициент трения скольжения, который приблизительно вдвое меньше. Поэтому при пробуксовке тяга, а в след за ней и ускорение, падают не менее чем вдвое.

Таким образом, зная силу N, приходящуюся на ведущие колёса автомобиля, можно определить максимальную тягу, создаваемую шинами, а уже по ней найти ускорение и время разгона.

1 ПОЛНОПРИВОДНЫЕ АВТОМОБИЛИ

Для полноприводных автомобилей эта сила N равна весу P автомобиля:

N = P = mg, (4)
где
m — масса автомобиля, кг;
g — ускорение свободного падения (9.81 м/с²).

Если подставить (2), (3) и (4) в (1), то получится

что для v = 100 км/ч = 27.78 м/c даёт

t_min ≈ 27.78/9.81 = 2.83 с

2 МОНОПРИВОДНЫЕ АВТОМОБИЛИ

С моноприводными автомобилями ситуация иная. У них за счёт продольного переноса веса во время разгона сила N будет определяться по формуле

N = δP ± maH/B = m∙(δg ± aH/B), (6)
где
δ — статическая доля веса автомобиля, приходящаяся на ведущую ось;
a — ускорение (2), с которым разгоняется автомобиль, м/с²;
H — высота центра тяжести автомобиля, мм;
B — колёсная база, мм.

При этом в случае заднеприводных автомобилей в формуле (6) используется знак «+», а в случае переднеприводных — знак «−».

Если подставить (3) и (6) в (2), то получится

откуда находим максимально возможное ускорение автомобиля:

Осталось подставить (7) в (1):

В формулах (7) и (8) знак «−» уже используется для заднеприводных автомобилей, а знак «+» — для переднеприводных.

Из выражения (8) видно, что при равномерной загрузке осей заднеприводный автомобиль потенциально будет разгоняться быстрее переднеприводного.

Оценим минимально возможное время разгона а/м Lada Granta. Для этого автомобиля известно, что статическая развесовка составляет 60/40, а база равна 2476 мм. В качестве высоты центра тяжести примем ⅓ от полной высоты автомобиля, т.е. 500 мм. Тогда по формуле (8) получаем

Видно, что по сравнению с полноприводным автомобилем это время оказалось вдвое дольше.

Теперь занизим центр тяжести нашей Гранты на 100 мм:

t_min ≈ (1 + 400/2476)∙27.78/(0.6∙9.81) = 5.48 с

С помощью такого занижения время разгона удалось сократить всего на 0.2 с

Посмотрим, что будет, если мы поставим гоночные шины с коэффициентом трения μ = 1.2:

t_min = (1 + 1.2∙400/2476)∙27.78/(0.6∙1.2∙9.81) = 4.70 с

Разница с исходным вариантом составляет уже почти 1 с, т.е. такая модификация сильнее влияет на сокращение времени разгона.

Найдём оценку минимальной мощности, выдаваемой двигателем, при которой рассчитанное время разгона становится достижимым.

Кинетическая энергия T автомобиля (как и любого другого тела) определяется по формуле

Тогда мощность с колёс во время разгона не должна быть меньше:

Здесь мы пренебрегли силами сопротивления качения и сопротивления воздуха.

Для рассмотренной выше Гранты со снаряженной массой 1160 кг на штатных шинах получается

W_min ≥ 1160∙27.78²/(2∙5.48) = 81.7 кВт = 110 л.с.

Обычно потери в трансмиссии составляют около 25%, что даёт оценку на минимальную мощность двигателя почти 140 л.с. К этому надо добавить мощность сил сопротивления, которые можно оценить в 10% от рассчитанной минимальной мощности с колёс.

Таким образом, если во время разгона мощность с колёс не будет падать ниже 120 л.с. (а мощность двигателя не будет падать ниже 150 л.с.), то минимально возможное время разгона становится достижимым.

Обычно во время разгона обороты двигателя не опускаются ниже 3000 об/мин. При таких оборотах мощность мотора составляет приблизительно половину от максимальной. Следовательно, минимально возможное время разгона можно ожидать на Гранте с двигателем не менее 300 л.с.

P.P.S. Дополнение, касающееся минимально возможного времени заезда на четверть мили

При равноускоренном движении пройденный путь S вычисляется по формуле

откуда легко выражается время

По этой формуле для полноприводного автомобиля получается

Источник

Управление автомобилем. Часть 5. Разгон

Последнее обновление: 17.07.2021
4 комментария

Основы управления автомобилем

Предыдущая, четвертая, часть раздела «Управление автомобилем» содержит очень важную тему – как трогаться с места. Необходимо научиться «стартовать» таким образом, чтобы покатиться, а не заскользить (т.е. не пробуксовать). В последствии это очень пригодится, например, на скользкой дороге.

В этой части рассмотрим не менее важную тему, как правильно разогнаться на автомобиле.

Вообще, разгон автомобиля, сам по себе, это не просто набор скорости. Это совокупность действий, включающих умение работать педалями управления и умение переключать передачи.

Если автомобиль оборудован «коробкой-автомат», то никаких вопросов с переключением возникнуть не должно. Автоматическая коробка все будет делать за вас. Но если автомобиль оборудован механической КПП, то понадобятся некоторые навыки.

До этого момента, для того, чтобы тронуться с места, было достаточно только первой передачи. Включение более высших передач так же не представляет большой сложности. Порядок их расположения есть в руководстве по эксплуатации автомобиля, и нанесен на рукоять КП. От вас потребуется запомнить лишь несколько правил:

А). Переключение выполняется только при полностью отключенном сцеплении (педаль сцепления необходимо нажать до пола).

Б). Передачи переключаются без лишнего усилия (не нужно заламывать рычаг, если он с первого раза «не нашел» свое место). Если передача не включилась с первого раза, требуется в нейтральном положении рычага отпустить педаль сцепления, нажать на нее снова, и повторить попытку.

В). При переключении передач целесообразно (но не обязательно) примерно на 0,5-1 секунду задерживать рычаг в нейтральном положении.

Вот такие требования к переключению передач. Со временем этот навык отработается до автоматизма.

Далее, необходимо понять, что в автомобиле отвечает за динамику разгона.

Другими словами, максимальный крутящий момент и максимальная мощность двигателя достигаются лишь при определенной частоте вращения коленчатого вала. Вы давите на «газ» — обороты двигателя увеличиваются. Соответственно, отпускаете «газ» — обороты снижаются.

Не нужно углубляться в анализ работы двигателя, надо просто запомнить, что в режиме ММ (максимальная мощность) двигатель развивает максимальную скорость, а в режиме МКМ (максимальный крутящий момент) – максимальное ускорение.

Нас интересует именно это ускорение, потому что от крутящего момента зависит тяга двигателя, и следовательно, интенсивность разгона.

Итак, выяснили, что за динамику разгона автомобиля отвечает крутящий момент двигателя, который вы можете регулировать, нажимая на педаль газа и переключая передачи. Чем выше передача, тем ниже обороты коленчатого вала на одной и той же скорости.

Момент переключения передач

Как выбрать момент переключения передач для разгона? На автомобилях с АКПП переключение происходит автоматически. Умный «автомат» сам знает, когда ему переключаться. На автомобиле с механической КПП вы должны быть уверены, что после переключения передачи у мотора будет хорошая тяга.

Если после переключения передачи тяги двигателя окажется недостаточно, то разгон будет «вялый», и на него потребуется больше времени, чем было нужно (иначе, для чего тогда нужно было разгоняться?!). Соответственно, увеличится расход топлива.

Чтобы правильно подобрать момент переключения передачи, существует значение МКМ (максимального крутящего момента).

Нормальный рабочий разгон происходит, когда вы включаете следующую передачу по достижении двигателем максимального крутящего момента. Применительно к автомобилю Lada Priora, который был взят для примера в начале статьи, это означает, что стрелка тахометра должна подняться до отметки 3500—4000 об/мин.

Можно, конечно, переключаться и на меньших оборотах, но не целесообразно это делать на отметке ниже 3000 об/мин. Потому что после переключения передачи обороты двигателя «упадут», и он будет тянуть слабо, ему не хватит крутящего момента для последующего «рывка».

Если же нужен максимально интенсивный разгон, например при обгоне, то можно смело поднимать обороты двигателя до ММ.

Разгон автомобиля

Теперь представьте, как будете разгоняться на авто с механической коробкой переключения передач. Вы плавно тронулись с места, и двигаетесь на первой передаче.

Чтобы остановиться, не переключая передачи плавно нажимаете на педаль тормоза и снижаете скорость. Когда стрелка тахометра снизится почти до холостых оборотов (1000—1200 об/мин), выжимаете педаль сцепления, чтобы двигатель не заглох, и продолжаете тормозить до полной остановки.

Небольшой комментарий к перечисленным выше действиям.

Какие ошибки в управлении могут быть допущены во время разгона автомобиля?

Самая распространенная из них – резкое отпускание педали сцепления. Это выглядит как почти «бросить» педаль. К чему это может привести?

Главная задача во время разгона и переключения передач – добиться плавности хода. Автомобиль не должен дергаться ни на старте, ни в движении.

«Бросание» педали сцепления непременно приведет к некоторому рывку, т.е. автомобиль «дернется». На сухой дороге это будет маленький неприятный момент, а на скользкой дороге такой рывок может привести к проскальзыванию колес, что может перейти в снос или занос с дальнейшей потерей управления.

По этой причине педаль сцепления нужно отпускать плавно, и обязательно с кратковременной задержкой в момент схватывания.

Другая ошибка (в основном у начинающих) – левая нога во время разгона «стоит» на педали сцепления. Необходимо привыкнуть убирать ногу на площадку, этот вопрос обсуждался в статье Управление автомобилем. Часть 3. Педали.

Еще одна ошибка у начинающих – они «ищут» глазами рычаг КП или смотрят на него во время переключения. В этом случае теряется контроль за дорогой. Чтобы не совершать такие ошибки во время движения, следует «проработать» все действия на стоящем на месте автомобиле.

А когда руки и ноги «запомнят» эти действия, их последовательность, то можно будет выезжать на площадку для дальнейшей отработки этих действий в движении.

Основам безопасности за рулем на дорогах общего пользования посвящен раздел «Вождение автомобиля». Это следующий этап после изучения ПДД, и освоения основных принципов управления автомобилем.

Будьте внимательны за рулем.

Автор: Сергей Довженко
Последняя редакция: 17.07.2021

Если есть желание поделиться прочитанным, ниже кнопки на выбор. Жмем, не стесняемся.

Источник

Ускорение при равноускоренном прямолинейном движении

теория по физике 🧲 кинематика

Ускорение тела равно отношению изменения вектора скорости ко времени, в течение которого это изменение произошло:

word image 135

v — скорость тела в данный момент времени, v 0 — скорость тела в начальный момент времени, t — время, в течение которого изменялась скорость

Пример №1. Состав тронулся с места и через 20 секунд достиг скорости 36 км/ч. Найти ускорение его разгона.

Сначала согласуем единицы измерения. Для этого переведем скорость в м/с: умножим километры на 1000 и поделим на 3600 (столько секунд содержится в 1 часе). Получим 10 м/с.

Начальная скорость состава равно 0 м/с, так как изначально он стоял на месте. Имея все данные, можем подставить их в формулу и найти ускорение:

word image 136

Проекция ускорения

word image 137

vx — проекция скорости тела в данный момент времени, v0x — проекция скорости в начальный момент времени, t — время, в течение которого изменялась скорость

Знак проекции ускорения зависит от того, в какую сторону направлен вектор ускорения относительно оси ОХ:

При решении задач на тему равноускоренного прямолинейного движения проекции величин можно записывать без нижнего индекса, так как при движении по прямой тело изменяет положение относительно только одной оси (ОХ). Их обязательно нужно записывать, когда движение описывается относительно двух и более осей.

Направление вектора ускорения

Направление вектора ускорения не всегда совпадает с направлением вектора скорости!

Равноускоренным движением называют такое движение, при котором скорость за одинаковые промежутки времени изменяется на одну и ту же величину. При этом направления векторов скорости и ускорения тела совпадают ( а ↑↑ v ).

Равнозамедленное движение — частный случай равноускоренного движения, при котором скорость за одинаковые промежутки времени уменьшается на одну и ту же величину. При этом направления векторов скорости и ускорения тела противоположны друг другу ( а ↑↓ v ).

Пример №2. Автомобиль сначала разогнался, а затем затормозил. Во время разгона направления векторов его скорости и ускорения совпадают, так как скорость увеличивается. Но при торможении скорость уменьшается, потому что вектор ускорения изменил свое направление в противоположную сторону.

word image 138

График ускорения

График ускорения — график зависимости проекции ускорения от времени. Проекция ускорения при равноускоренном прямолинейном движении не изменяется (ax=const). Графиком ускорения при равноускоренном прямолинейном движении является прямая линия, параллельная оси времени.

word image 139

Зависимость положения графика проекции ускорения относительно оси ОХ от направления вектора ускорения:

Если график ускорения лежит на оси времени, движение равномерное, так как ускорение равно 0. Скорость в этом случае — величина постоянная.

word image 140

Чтобы сравнить модули ускорений по графикам, нужно сравнить степень их удаленности от оси времени независимо от того, лежат они выше или ниже нее. Чем дальше от оси находится график, тем больше его модуль. На рисунке график 2 находится дальше от оси времени по сравнению с графиком один. Поэтому модуль ускорения тела 2 больше модуля ускорения тела 1.

Пример №3. По графику проекции ускорения найти участок, на котором тело двигалось равноускорено. Определить ускорение в момент времени t1 = 1 и t2 = 3 с.

word image 141

В промежуток времени от 0 до 1 секунды график ускорения рос, с 1 до 2 секунд — не менялся, а с 2 до 4 секунд — опускался. Так как при равноускоренном движении ускорение должно оставаться постоянным, ему соответствует второй участок (с 1 по 2 секунду).

Чтобы найти ускорение в момент времени t, нужно мысленно провести перпендикулярную прямую через точку, соответствующую времени t. От точки пересечения с графиком нужно мысленно провести перпендикуляр к оси проекции ускорения. Значение точки, в которой пересечется перпендикуляр с этой осью, покажет ускорение в момент времени t.

На рисунке показан график зависимости координаты x тела, движущегося вдоль оси Ох, от времени t (парабола). Графики А и Б представляют собой зависимости физических величин, характеризующих движение этого тела, от времени t. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.

К каждой позиции графика подберите соответствующую позицию утверждения и запишите в поле цифры в порядке АБ.

14 image

Алгоритм решения

Решение

График зависимости координаты тела от времени имеет вид параболы в случае, когда это тело движется равноускоренно. Так как движение тела описывается относительно оси Ох, траекторией является прямая. Равноускоренное прямолинейное движение характеризуется следующими величинами:

Перемещение и путь при равноускоренном прямолинейном движении изменяются так же, как координата тела. Поэтому графики их зависимости от времени тоже имеют вид параболы.

График зависимости скорости от времени при равноускоренном прямолинейном движении имеет вид прямой, которая не может быть параллельной оси времени.

График зависимости ускорения от времени при таком движении имеет вид прямой, перпендикулярной оси ускорения и параллельной оси времени, так как ускорение в этом случае — величина постоянная.

Исходя из этого, ответ «3» можно исключить. Остается проверить ответ «1». Кинетическая энергия равна половине произведения массы тела на квадрат его скорости. Графиком квадратичной функции является парабола. Поэтому ответ «1» тоже не подходит.

График А — прямая линия, параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости ускорения от времени (или его модуля). Поэтому первая цифра ответа — «4».

График Б — прямая линия, не параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости скорости от времени (или ее проекции). Поэтому вторая цифра ответа — «2».

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алгоритм решения

Решение

Запишем исходные данные:

Формула, которая связывает ускорение тела с пройденным путем:

word image 285

Так как скорость растет, ускорение положительное, поэтому перед ним в формуле поставим знак «+».

Выразим из формулы ускорение:

word image 286

Подставим известные данные и вычислим ускорение автомобиля:

word image 287

pазбирался: Алиса Никитина | обсудить разбор | оценить

Внимательно прочитайте текст задани я и выберите верный ответ из списка. На рисунке приведён график зависимости проекции скорости тела vx от времени.

Какой из указанных ниже графиков совпадает с графиком зависимости от времени проекции ускорения этого тела ax в интервале времени от 6 с до 10 с? 12 image

Алгоритм решения

Решение

Согласно графику проекции скорости в интервале времени от 6 с до 10 с тело двигалось равнозамедленно. Это значит, что проекция ускорения на ось ОХ отрицательная. Поэтому ее график должен лежать ниже оси времени, и варианты «а» и «в» заведомо неверны.

Чтобы выбрать между вариантами «б» и «г», нужно вычислить ускорение тела. Для этого возьмем координаты начальной и конечной точек рассматриваемого участка:

Используем для вычислений следующую формулу:

word image 266

Подставим в нее известные данные и сделаем вычисления:

2

Этому значению соответствует график «г».

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алгоритм решения

Решение

Записываем формулу ускорения:

word image 263

По условию задачи нужно найти модуль ускорения, поэтому формула примет следующий вид :

word image 264

Выбираем любые 2 точки графика. Пусть это будут:

Подставляем данные формулу и вычисляем модуль ускорения:

word image 265

pазбирался: Алиса Никитина | обсудить разбор | оценить

Источник

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти аспекты основные
  • Среда обитания скачать как найти работу
  • Как исправить скриншот на телефоне
  • Как правильно составить резюме совет
  • Как найти тангенсы смежных углов

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии