Как найти взаимный перпендикуляр

Расстояния

Задача на нахождения расстояния в стереометрической фигуре является главной и самой важной из всех. Прежде всего определимся с тем, что имеется ввиду под словом «расстояние», ведь их может быть бесконечно много.

Расстояние между объектами в геометрии – это кратчайшее из расстояний между ними.

Обозначение:

В стереометрии найти расстояние можно между следующими комбинациями фигур:

РАССТОЯНИЕ МЕЖДУ ТОЧКАМИ

Расстояние между точками– это длина отрезка, соединяющего эти точки.

В задачах на стереометрию мы не можем просто воспользоваться линейкой, и длину этого отрезка должны найти аналитически. Поэтому длину отрезка AB между точками A и B находят как сторону треугольника, если отрезок AB удается включить в некоторый треугольник в качестве одной из его сторон.

То есть если в задаче предлагается найти расстояние между точками, нужно задать себе вопрос: «В каком треугольнике этот отрезок является стороной?», затем построить этот треугольник и найти в нем нужную сторону.

Например:

РАССТОЯНИЕ МЕЖДУ ТОЧКОЙ И ПРЯМОЙ

Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки на прямую.

Этот отрезок перпендикуляра можно вычислить, включив его в треугольник (или трапецию) в качестве одной из высот. То есть нужно задать себе вопрос: «В каком треугольнике этот отрезок является высотой?», затем построить этот треугольник и найти в нем высоту.

Например:

РАССТОЯНИЕ МЕЖДУ ТОЧКОЙ И ПЛОСКОСТЬЮ

Существует несколько способов нахождения расстояния от точки до плоскости:

  • Построение перпендикуляра из точки на плоскость.

  • К этому способу обращаются, если расстояние из точки M на плоскость опускать неудобно, а удобно опустить равный ему перпендикуляр из другой точки, лежащей на одной линии с M.
  • Построение перпендикуляра из точки прямой к плоскости.

  • Построение перпендикуляра из точки плоскости на плоскость.

К этому способу, аналогично, обращаются, если расстояние из точки M на плоскость опускать неудобно, а удобно опустить равный ему перпендикуляр из другой точки, лежащей на одной плоскости с M.

  • Через двойное выражение объема.

Расстояние от точки M до плоскости β – это перпендикуляр, опущенный из точки на плоскость, то есть по сути это высота в некоторой пирамиде с вершиной M и плоскостью основания, лежащей на β. Если легко вычислить объем этой пирамиды, используя другое основание и другую высоту, то через этот объем можно найти нужное расстояние.

Например:

РАССТОЯНИЕ МЕЖДУ СКРЕЩИВАЮЩИМИСЯ ПРЯМЫМИ

Существует несколько способов нахождения расстояния между скрещивающимися прямыми:

1. Построение взаимного перпендикуляра.

2. Построение параллельной прямой.

К этому способу обращаются, если строить взаимный перпендикуляр неудобно и одна из скрещивающихся прямых уже заключена в удобную плоскость.

К этому способу обращаются, если строить взаимный перпендикуляр неудобно и скрещивающиеся прямые уже заключены в удобные плоскости.

3. Построение параллельной плоскости.

Не будет преувеличением утверждать, что построение взаимно перпендикулярных прямых и плоскостей наряду с определением расстояния между двумя точками являются основными графическими операциями при решении метрических задач.

Теоретической предпосылкой для построения на эпюре Монжа проекций прямых и плоскостей, перпендикулярных по отношению друг к другу в пространстве, служит отмеченное раньше (см. § 6) свойство

проекции прямого угла, одна из сторон которого параллельна какой-либо плоскости проекции:

Формула

1. Взаимно перпендикулярные прямые.

Чтобы можно было воспользоваться отмеченным свойством для построения на эпюре Монжа двух пересекающихся под углом 90° прямых, необходимо, чтобы одна из них была параллельна какой-либо плоскости проекции. Поясним сказанное на примерах.

ПРИМЕР 1. Через точку А провести прямую l, пересекающую горизонталь h под прямым углом (рис. 249).

Так как одна из сторон h прямого угла параллельна плоскости π1 , то на эту плоскость прямой угол спроецируется без искажения. Поэтому через А’ проводим горизонтальную проекцию l’ ⊥ h’. Отмечаем точку М’ = l’ ∩ h’. Находим М» (М» ∈ h»). Точки А» и М» определяют l» (см. рис. 249, а).

Если вместо горизонтали будет задана фронталь f, то геометрические построения по проведению прямой l ⊥ f аналогичны только что рассмотренным с той лишь разницей, что построения неискаженной проекции прямого угла следует начинать с фронтальной проекции (см. рис. 249, б).

ПРИМЕР 2. Через точку А провести прямую l , пересекающую прямую а , заданную отрезком [ВС], под углом 90° (рис. 250).

Так как данный отрезок занимает произвольное положение по отношению к плоскостям проекций, мы не можем, как в предыдущем примере, воспользоваться свойством о частном случае проецирования прямого угла, поэтому вначале необходимо [ВС] перевести в положение, параллельное какой-либо плоскости проекции.

На рис. 250 [ВС] переведен в положение, параллельное плоскости π3. Это сделано с помощью способа замены плоскостей проекции путем замены плоскости π1 → π3 || [ВС].

В результате такой замены в новой системе x1π23 [ВС] определяет горизонтальную прямую, поэтому все дальнейшие простроения выполнены так же, как это было сделано в предыдущем примере: после того, как была найдена точка М’1, ее перевели на исходные плоскости проекции в положение М» и М’, эти точки совместно с А» и А’ определяют проекции прямой l.

ПРИМЕР 3. Провести горизонтальную проекцию стороны [ВС] прямого угла АВС, если известны его фронтальная проекция ∠A»B»C» и горйзонтапьная проекция стороны [А’В’] (рис. 251).

РЕШЕНИЕ:

1. Переводим сторону угла [ВА] в положение || π3 путем перехода от системы плоскостей проекции хπ21 к новой x1π32

Рис 249.Построение взаимно перпендикулярных прямых, прямой и плоскости, плоскостей
Рис 250-251.Построение взаимно перпендикулярных прямых, прямой и плоскости, плоскостей

2. Определяем новую фронтальную проекцию [B»11].

Из В»1 восставляем перпендикуляр к [В»11]. На этом перпендикуляре определяем точку С»1 (С»1 удалена от оси x1 на расстояние |Сx1 С»1| = |СxС»|).

4. Горизонтальная проекция С’ определяется как точка пересечения прямых (С»1Сx1) ∩ (С»Сx) = С’.

2. Взаимно перпендикулярные прямая и плоскость.

Из курса стереометрии известно, что прямая перпендикулярна плоскости, если она перпендикулярна хотя бы к двум пересекающимся прямым, принадлежащим этой плоскости.

Если в плоскости взять не произвольные пересекающиеся прямые, а ее горизонталь и фронталь, то открывается возможность воспользоваться свойством проекции прямого угла, как это было сделано в примере 1, рис. 249.

Рассмотрим следующий пример; пусть из точки A ∈ α требуется восставить перпендикуляр к плоскости α (рис. 252).

Через точку А проводим горизонталь h и фронталь f плоскости α. Тогда, по определению (АВ), перпендикулярная к плоскости α, должна быть перпендикулярна к прямым h и f, т. е. Формула . Но сторона AM ∠ ВАМ || π1, поэтому ∠ВАМ проецируется на плоскость π1, без
искажения, т. е.Формула. Сторона АК ∠ ВАК || π2 и, следовательно, на плоскость π2 этот угол проецируется также без искажения, т. е. и Формула. Приведенные рассуждения можно сформулировать в виде следующей теоремы: для того чтобы прямая в пространстве была перпендикулярна плоскости, необходимо и достаточно, чтобы на эпюре горизонтальная проекция прямой была перпендикулярна к горизонтальной проекции горизонтали плоскости, а фронтальная проекция к фронтальной проекции фронтали этой плоскости.

Если плоскость задана следами, то теорема может быть сформулирована иначе: для того чтобы прямая в пространстве была перпендикулярна плоскости, необходимо и достаточно, чтобы проекции этой прямой были перпендикулярны к одноименным следам плоскости.

Рис 252-253.Построение взаимно перпендикулярных прямых, прямой и плоскости, плоскостей

Установленные теоремой зависимости между прямой в пространстве, перпендикулярной к плоскости, и проекциями этой прямой к проекциям линий уровня (следам) плоскости лежат в основе графического алгоритма решения задачи по проведению прямой, перпендикулярной к плоскости, а также построения плоскости, перпендикулярной к заданной прямой.

Рис 254.Построение взаимно перпендикулярных прямых, прямой и плоскости, плоскостей

ПРИМЕР 1. Восставить в вершине А перпендикуляр AD к плоскости ΔАВС (рис. 253).

Для того чтобы определить направление проекций перпендикуляра, проводим проекции горизонтали h и фронтали f плоскости ΔАВС. После этого из точки А’ восставляем перпендикуляр к h’, а из А» — к f’.

ПРИМЕР 2. Из точки А, принадлежащей плоскости α (m || n), восставить перпендикуляр к этой плоскости (рис. 254).

РЕШЕНИЕ. Для определения направления проекций перпендикуляра l’ и l», как и в предыдущем примере, проводим через точку А (А’,А») горизонталь h(h’, h»), принадлежащую плоскости α. Зная направление h’, строим горизонтальную проекцию перпендикуляра l’ (l’ ⊥ h’). Для определения направления фронтальной проекции перпендикуляра через точку А (А’, А») проводим фронталь f (f’, f») плоскости α. В силу параллельности f фронтальной плоскости проекции прямой угол между l и f проецируется на π2 без искажения, поэтому проводим l» ⊥ f».

На рис. 255 эта же задача решена для случая, когда плоскость α задана следами. Для определения направлений проекций перпендикуляра отпадает необходимость в проведении горизонтали и фрон-

Рис 255-257.Построение взаимно перпендикулярных прямых, прямой и плоскости, плоскостей

тали, так как их функции выполняют следы плоскости h и f. Как видно из чертежа, решение сводится к проведению через точки А’ и А» проекций l’ ⊥ h и l» ⊥ f.

ПРИМЕР 3. Построить плоскость γ, перпендикулярную к данной прямой l и проходящую через заданную точку А (рис. 256).

РЕШЕНИЕ. Через точку А проводим горизонталь h и фронталь f. Эти две пересекающиеся прямые определяют плоскость; чтобы она была перпендикулярна к прямой l, необходимо, чтобы прямые h и f составляли с прямой l угол 90°. Для этого проводим h’ ⊥ l’ и f» ⊥ l». Фронтальная проекция h» и горизонтальная проекция f’ проводятся параллельно оси x.

Рассмотренный случай позволяет по иному решать задачу, приведенную в примере 3 (с. 175 рис. 251). Сторона [ВС] ∠АВС должна принадлежать плоскости γ ⊥ [АВ] и проходить через точку В (рис. 257).

Это условие и определяет ход решения задачи, который состоит в следующем: заключаем точку В в плоскость γ ⊥ [АВ], для этого через точку В проводим горизонталь и фронталь плоскости γ так, чтобы h’ ⊥ A’B’ и f» ⊥ A»B».

Точка С ∈ (ВС), принадлежащей плоскости γ, поэтому для нахождения ее горизонтальной проекции проводим через С» произвольную прямую 1″2″, принадлежащую плоскости γ; определяем горизонтальную проекцию этой прямой 1’2′ и на ней отмечаем точку С’ (С’ определяется пересечением линии связи — перпендикуляра, опущенного из С», с горизонтальной проекцией прямой 1’2′). С’ совместно с В’ определяют горизонтальную проекцию (ВС) ⊥ (АВ).

3. Взаимно перпендикулярные плоскости..

Две плоскости перпендикулярны, если одна из них содержит прямую, перпендикулярную к другой плоскости.

Исходя из определения перпендикулярности плоскостей, задачу на построение плоскости β, перпендикулярной к плоскости α, решаем следующим путем: проводим прямую l, перпендикулярную к плоскости α; заключаем прямую l в плоскость β. Плоскость β ⊥ α, так как β ⊃ l ⊥ α.

Через прямую l можно провести множество плоскостей, поэтому задача имеет множество решений. Чтобы конкретизировать ответ, необходимо указать дополнительные условия.

ПРИМЕР 1. Через данную прямую а провести плоскость β, перпендикулярную к плоскости α (рис. 258).

РЕШЕНИЕ. Определяем направление проекций перпендикуляра к плоскости α, для этого находим горизонтальную проекцию горизонтали (h’) и фронтальную проекцию фронтали (f») ; из проекций произвольной точки А ∈ α проводим проекции перпендикуляра l’ ⊥ h’ и l» ⊥ f». Плоскость β ⊥ α, так как β ⊃ l ⊥ α.

Рис 258.Построение взаимно перпендикулярных прямых, прямой и плоскости, плоскостей

ПРИМЕР 2. Через данную точку А провести горизонтально проецирующую плоскость γ, перпендикулярную к плоскости α, заданной следами (рис. 259, а).

Искомая плоскость γ должна содержать прямую, перпендикулярную плоскости α, или быть перпендикулярной к прямой, принадлежащей плоскости α. Так как плоскость γ должна быть горизонтально проецирующей, то прямая, перпендикулярная к ней, должна быть параллельна плоскости π1, т. е. являться горизонталью плоскости α или (что то же самое) горизонтальным следом этой плоскости — h Поэтому через горизок тальную проекцию точки А’ проводим горизонтальный след h ⊥ h фронтальный след f ⊥ оси х.

На рис. 259, б показана фронтально проецирующая плоскость γ, проходящая через точку В и перпендикулярная к плоскости π2.

Из чертежа видно, что отличительной особенностью эпюра, на котором заданы две взаимно перпендикулярные плоскости, из которых одна — фронтально проецирующая, является перпендикулярность их фронтальных следов f ⊥ f, горизонтальный след фронтально проецирующей плоскости перпендикулярен оси х.

Рис 259.Построение взаимно перпендикулярных прямых, прямой и плоскости, плоскостей

Взаимно перпендикулярные прямые

Взаимно перпендикулярные прямые, пересекаясь имеют одну общую точку и образуют при этом плоский угол.

Если проекция некоторого угла, у которого одна сторона, параллельна плоскости проекции,
равна прямому углу, то и проецируемый угол также прямой.

Взаимно перпендикулярные прямые могут быть проведены на основе данного утверждения на эпюре Монжа: из двух
пересекающихся под прямым углом прямых, необходимо чтобы одна из них была параллельна какой-либо
плоскости проекции.

Через точку A провести прямую m перпендикулярную горизонтали h (на рисунке это отрезок [BC]) .

Взаимно перпендикулярные прямые

Взаимно перпендикулярные прямые

h` — это горизонтальная проекция прямой h параллельной плоскости проекции H. Принимая ее за одну сторону прямого угла, восстанавливаем из точки A` перпендикуляр m` и на их пересечении находим точку M`. По линии связи определяем недостающую проекцию .

Через точку A провести прямую m ⊥[BC].

Взаимно перпендикулярные прямые

Взаимно перпендикулярные прямые

Судя по проекциям отрезка [B`C`], [B»C»], они принадлежат прямой [BC] общего положения. До того как опустить перпендикуляр из точки A на данную прямую, необходимо перевести ее в частное положение:
— [BC] ║ H, на эпюре: [B`C`] ║ x

или
— [BC] ║ V, на эпюре: [B»C»] ║ x.

Перевод осуществляем способом перемены плоскостей проекций — введя новую плоскость проекции H1, проведя ось x1 ║ [B»C»]. На H1 строим проекции отрезка [B`1C`1], которая представляет собой проекцию горизонтальной прямой и проекцию точки A`1. Из точки A`1, опуская перпендикуляр к [B`1C`1], находим точку M`1 и далее , M` и , m`.

Провести недостающую горизонтальную проекцию стороны BC прямого угла ABC

Взаимно перпендикулярные прямые

Взаимно перпендикулярные прямые

+

Перпендикулярность векторов

Мы можем выяснить, будут ли два каких-либо вектора взаимно перпендикулярными. Для этого нужно воспользоваться координатами векторов и некоторыми приемами, описанными в данной статье. Информация о перпендикулярности будет полезной для решения некоторых задач физики и математики.

Координаты вектора на плоскости, равного по модулю и перпендикулярного данному

Пусть на плоскости заданы координаты какого-либо вектора. Из этих координат получим координаты двух дополнительных векторов, перпендикулярных первоначальному вектору. Все три вектора будут иметь равные длины и располагаться в плоскости xOy.

Алгоритм получения координат перпендикулярных векторов

Вектор на плоскости xOy, перпендикулярный данному вектору получают так:

  1. Поменять местами координатные числа «x» и «y».
  2. Заменить знак у одной из координат на противоположный.

Графический пример

Рассмотрим небольшой графический пример (рис. 1).

Черные и красный векторы перпендикулярны

Рис. 1. На рисунке векторы, обозначенные черным цветом, перпендикулярны вектору, обозначенному красным цветом

На плоскости проведены три вектора: один красный и два черных и, отмечены их координаты. Рассмотрим подробнее координаты двух векторов: (vec{a}) и (vec{b}).

[ vec{a} = left{ 4 ; 3 right} ]

[ vec{b} = left{ -3 ; 4 right} ]

Из рисунка видно, что векторы (vec{a}) и (vec{b}) перпендикулярны: ( vec{a} perp vec{b} ).

Вектор ( -vec{b} = left{ 3 ; -4 right} ), также будет перпендикулярным вектору ( vec{a} ): ( vec{a} perp vec{(-b)} )

Векторы, изображенные черным цветом, перпендикулярны красному вектору.

Длины векторов ( vec{a} ), ( vec{b} ) и ( vec{(-b)} ) равны.

 Условие перпендикулярности векторов

Взаимную перпендикулярность двух векторов можно проверить, вычислив их скалярное произведение. Этот способ проверки можно применять для векторов, расположенных как на плоскости, так и в трехмерном пространстве.

Векторы будут перпендикулярными, когда их скалярное произведение равно нулю.

Пусть, известны координаты двух векторов и пусть каждый вектор имеет ненулевую длину.

[ large boxed { begin{cases} vec{a} = left{ a_{x} ; a_{y} ; a_{z} right} \ vec{b} = left{ b_{x} ; b_{y} ; b_{z} right} \ |vec{a}| ne 0  \ |vec{b}| ne 0 end{cases}}]

Запишем условие перпендикулярности векторов.

Для двумерного случая:

[ large boxed { a_{x} cdot b_{x} + a_{y} cdot b_{y} = 0 }]

Для трехмерного случая:

[ large boxed { a_{x} cdot b_{x} + a_{y} cdot b_{y} + a_{z} cdot b_{z} = 0 }]

Пользуясь любой из этих формул, можно определить одну неизвестную координату вектора.

При этом, должны быть известными остальные координаты этого вектора и все координаты второго вектора.

Примечание:

Есть такое правило: Количество неизвестных должно равняться количеству уравнений.

Чтобы однозначно определить значение неизвестной, в уравнение должна входить только одна неизвестная. Остальные величины должны быть известными.

Перпендикулярные векторы в физике

В физике перпендикулярность некоторых векторов достаточно важна.

Вот несколько примеров:

  1. Если угол между вектором скорости тела и вектором силы, действующей на тело, будет прямым, то такая сила работу по перемещению тела совершать не будет.
  2. На проводник с током магнитное поле действует максимальной силой, когда вектор магнитной индукции и вектор тока в проводнике перпендикулярны.
  3. Когда угол между вращающей силой и, расстоянием между точкой приложения силы и осью вращения, будет прямым, вращательный момент будет максимальным.
  4. Между линейной скоростью точки колеса и расстоянием от этой точки до оси вращения, угол прямой (радиус и касательная перпендикулярны).
  5. На вращающееся тело действует центростремительная сила. Угол прямой между этой силой и линейной скоростью точки тела (радиус и касательная перпендикулярны).

Оценка статьи:

Загрузка…

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти спутник с помощью антенны
  • Как составить меню на неделю правильное питание на 1500 ккал в день с рецептами
  • Как найти слово в строке kotlin
  • Как составить кроссворд по музыке для детей
  • Как найти другие соц сети человека

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии