Как составить схему электрической цепи по ветвям узлам

Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм.

Электрические цепи

Электрическая цепь – это совокупность устройств, по которым течет электрический ток.

Рассмотрим самую простую электрическую цепь.  Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:

Электрическая цепь – это соединенные между собой источник тока, линии передачи и приемник.

Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.

Электрическая цепь

Электрическая цепь

Кстати, о том, что такое трансформатор, читайте в отдельном материале нашего блога.

По какому фундаментальному признаку можно разделить все цепи электрического тока? По тому же, что и ток! Есть цепи постоянного тока, а есть – переменного. В цепи постоянного тока он не меняет своего направления, полярность источника постоянна. Переменный же ток периодически изменяется во времени как по направлению, так и по величине.

Сейчас переменный ток используется повсеместно. О том, что для этого сделал Никола Тесла, читайте в нашей статье.

Элементы электрических цепей

Все элементы электрических цепей можно разделить на активные и пассивные. Активные элементы цепи – это те элементы, которые индуцируют ЭДС. К ним относятся источники тока, аккумуляторы, электродвигатели. Пассивные элементы – соединительные провода и электроприемники.

Приемники и источники тока, с точки зрения топологии цепей, являются двухполюсными элементами (двухполюсниками). Для их работы необходимо два полюса, через которые они передают или принимают электрическую энергию. Устройства, по которым ток идет от источника к приемнику, являются четырехполюсниками. Чтобы передать энергию от одного двухполюсника к другому им необходимо минимум 4 контакта, соответственно для приема и передачи.

Резисторы – элементы электрической цепи, которые обладают сопротивлением. Вообще, все элементы реальных цепей, вплоть до самого маленького соединительного провода, имеют сопротивление. Однако в большинстве случаев этим можно пренебречь и при расчете считать элементы электрической цепи идеальными.

Существуют условные обозначения для изображения элементов цепи на схемах.

Обозначения элементов электрической цепи

 

Кстати, подробнее про силу тока, напряжение, сопротивление и закон Ома для элементов электрической цепи читайте в отдельной статье.

Вольт-амперная характеристика – фундаментальная характеристика элементов цепи. Это зависимость напряжения на зажимах элемента от тока, который проходит через него. Если вольт-амперная характеристика представляет собой прямую линию, то говорят, что элемент линейный. Цепь, состоящая из линейных элементов – линейная электрическая цепь. Нелинейная электрическая цепь – такая цепь, сопротивление участков которой зависит от значений и направления токов.

Какие есть способы соединения элементов электрической цепи? Какой бы сложной ни была схема, элементы в ней соединены либо последовательно, либо параллельно.

Способы соединения элементов электрической цепи

 

При решении задач и анализе схем используют следующие понятия:

  • Ветвь – такой участок цепи, вдоль которого течет один и тот же ток;
  • Узел – соединение ветвей цепи;
  • Контур – последовательность ветвей, которая образует замкнутый путь. При этом один из узлов является как началом, так и концом пути, а другие узлы встречаются в контуре только один раз.

Чтобы понять, что есть что, взглянем на рисунок:

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Схема электрической цепи

 

Классификация электрических цепей

По назначению электрические цепи бывают:

  • Силовые электрические цепи;
  • Электрические цепи управления;
  • Электрические цепи измерения;

Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.

Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.

Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.

Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.

Расчет электрических цепей

Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.

Электрическая цепь

 

Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:

решение электрических цепей

Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов

решение электрических цепей

Какую бы цепь Вам ни понадобилось рассчитать, наши специалисты всегда помогут справится с заданиями. Мы найдем все токи по правилу Кирхгофа и решим любой пример на переходные процессы в электрических цепях. Получайте удовольствие от учебы вместе с нами!

8. Топологические элементы схемы: ветви, узлы, контуры.

Электрическая
схема
представляет собой графическое
изображение электрической цепи. Она
показывает как осуществляется соединение
элементов рассматриваемой электрической
цепи.

«Электрическими»
элементами схемы служат активные и
пассивные элементы цепи.

«Геометрическими»
элементами схемы являются ветви и узлы.

Ветвь
– участок схемы, расположенный между
двумя узлами и образованный одним или
несколькими последовательно соединенными
электрическими элементами цепи (рис.
11).

Рис. 11. Изображение
ветвей электрической схемы.

Под последовательным
соединением

элементов цепи понимается такое их
соединение, при котором через все эти
элементы проходит один и тот же ток.

Узел
– место соединения трех или большего
числа ветвей. Место соединения двух
ветвей рассматривается как устранимый
узел.

Рис. 12. Изображение
узла электрической схемы.

Ветви присоединенные
к одной паре узлов называются параллельными
(рис. 13).

Рис. 13. Параллельное
соединение двух ветвей.

На рис. 14 изображена
электрическая схема пять ветвей и три
узла.

Стрелкой на рис.
указано направление обхода одного из
контуров.

Рис. 14. Схема
электрической цепи.

Под контуром
понимается любой замкнутый путь,
проходящий по нескольким ветвям.

В зависимости от
числа контуров, имеющихся в схеме,
различают многоконтурные и одноконтурные
схемы.

Одноконтурная
замкнутая схема показана на рис. 15.

Одноконтурная
схема является простейшей.

Рис. 15. Одноконтурная
схема.

9. Распределение потенциала вдоль участка ветви. Потенциальная диаграмма.

Рассмотрим участок
электрической цепи (рис. 16)

Рис. 16.

Участок ветви,
содержащий один или несколько источников
энергии, является активным.

Положительные
направления тока и напряжения указаны
стрелкой.

Определим потенциалы
точек c,
d,
e,
b,
предположив, что известен потенциал
точки a-a.

Для правильного
выбора знаков следует
помнить
,
что:

  1. ток в сопротивлении
    всегда направлен от более высокого
    потенциала к более низкому, т.е. потенциал
    падает по направлению тока.

  2. э.д.с., направленная
    от точки «с» к точке «d»,
    повышает потенциал последней на величину
    E.

  3. напряжение U=Uac
    положительно, когда потенциал точки а
    выше, чем потенциал точки с.

При обозначении
напряжения (разности потенциалов) на
схемах посредством стрелки она ставится
в направлении от точки высшего потенциала
к точке низшего потенциала.

На рис. 16 ток
протекает от точки «а» к точке «с»,
значит потенциал с
будет меньше a
на величину
падения напряжения на сопротивлении
R1,
которое по закону Ома равно IR1:

с = a
— IR1

На участке cd
э.д.с. E1
действует в сторону повышения потенциала,
следовательно:

d =
с
+
E1
=
a

IR1+
E1

Потенциал точки
«e»
меньше потенциала точки «d»
на величину падения напряжения на
сопротивлении R2:

e
=
d

IR2
=
a

IR1+
E1
IR2

На участке e
в э.д.с. E2
действует
таким образом, что потенциал точки «b»
меньше потенциала точки «e»
на величину E2:

b =
e

E2
=
a

IR1+
E1
IR2

E2
= a
– I(R1+R2)
+ E1-E2
(15)

Чтобы наглядно
оценить распределение потенциала вдоль
участка цепи, полезно построить
потенциальную диаграмму, которая
представляет график изменения потенциала
вдоль участка цепи или замкнутого
контура.

По оси абсцисс
графика откладываются потенциалы точек,
а по оси ординат – сопротивления
отдельных участков цепи. Для участка
цепи рис. 16 распределение потенциала
построено на рис. 17.

Рис. 16. Потенциальная
диаграмма участка цепи.

Потенциальная
диаграмма рис. 16 построена, начиная с
точки a,
которая условно принята за начало
отсчета. Потенциал a
принят
равным нулю.

Точка цепи, потенциал
которой условно принимается равным
нулю, называется базисной.

Если в условии
задачи не оговорено, какая точка является
базисной, то можно потенциал любой точки
условно приравнивать к нулю. Тогда
потенциалы всех остальных точек будут
определяться относительно выбранного
базиса.

Соседние файлы в папке Конспект 2

  • #
  • #
  • #
  • #
  • #
  • #
  • #

ads

Электрическая схема представляет собой графическое изображение электрической цепи. Она показывает, как осуществляется соединение элементов в рассматриваемой электрической цепи.

Простым языком электрическая схема это упрощенное изображение электрической цепи.

Для отображение электрических компонентов (конденсаторов, резисторов, микросхем и т. д.) в электрических схемах используются их условно графические обозначения.  

Для отображения электрических соединений (дорожек, проводов, соединения между радиоэлементами) применяют простую линию соединяющие два условно графических обозначения. Причём все ненужные изгибы дорожек удаляют.

В состав электрической схемы входят: ветвь и условно графические обозначение электрических элементов так же могут входить контур и узел.

Безымянный - копия (2) - копия

  Ветвь – участок цепи состоящий из одного или нескольких элементов вдоль которого ток один и тот же.

Ветви присоединённые к одной паре узлов называются параллельными.


Безымянный - копия (2)

Любой замкнутый путь, проходящий по нескольким ветвям называется контуром. На верхнем рисунке, контурами можно считать ABD; BCD; ABC.

Узел – место соединения трёх и Безымянный - копия (3) - копияболее ветвей. 

  • Узел A
  • Узел B
  • Узел C
  • Узел D

Точки К и Е не являются узлами.

Главная

Примеры решения задач ТОЭ

РЕШЕНИЕ ЗАДАЧ ТОЭ — МЕТОДЫ, АЛГОРИТМЫ, ПРИМЕРЫ РЕШЕНИЯ

1 Методы расчета электрических цепей при постоянных токах и напряжениях

1.4 Метод узловых потенциалов. Метод узлового напряжения (метод двух узлов)

1.4 Метод узловых потенциалов. Метод узлового напряжения (метод двух узлов)

Методы и примеры решения задач ТОЭ

РЕШЕНИЕ ЗАДАЧ ТОЭ — МЕТОДЫ, АЛГОРИТМЫ, ПРИМЕРЫ РЕШЕНИЯ

1 Методы расчета электрических цепей при постоянных токах и напряжениях

1.4 Метод узловых потенциалов. Метод узлового напряжения (метод двух узлов)

В методе узловых потенциалов за вспомогательные расчетные величины принимают потенциалы узлов схемы. При этом потенциалом одного из узлов задаются, обычно считая его равным нулю (заземляют). Этот узел называют опорным узлом. Затем для каждого узла схемы, кроме опорного узла, составляют систему уравнений методом узловых потенциалов. По найденным потенциалам узлов находят токи ветвей по обобщенному закону Ома (закону Ома для ветви с ЭДС).

Отметим, что метод узловых потенциалов без предварительного преобразования схемы не применим к схемам с взаимной индукцией.

Для схем, содержащих несколько ветвей только с идеальными источниками ЭДС (без пассивных элементов), не имеющих общего узла нужно применять особые способы составления системы уравнений метода узловых потенциалов.

Для схем, содержащих несколько ветвей только с идеальными источниками ЭДС (без пассивных элементов), имеющих общий узел, этот общий узел принимают за опорный узел (заземляют). Тогда потенциалы узлов, соединенных этими идеальными источниками ЭДС без пассивных элементов с опорным узлом, равны ЭДС этих идеальных источников (+E, если идеальный источник ЭДС направлен от опорного узла и –E в противном случае).

Метод двух узлов является частным случаем метода узловых потенциалов. Он применяется для определения токов в ветвях схемы с двумя узлами и произвольным числом параллельных активных и пассивных ветвей.


Решение задач методом узловых потенциалов и методом двух узлов


Задача 1.4.1 Рассчитать цепь рис. 1.4.1 методом узловых, потенциалов.

Задача 1.4.1 Рассчитать цепь рис. 1.4.1 методом узловых, потенциалов

Рис. 1.4.1

Решение. В рассматриваемой схеме четыре узла. Заземлим узел 4 (опорный узел)

φ 4 =0.

Тогда

φ 3 = φ 4 + E 2 =200  B.

Необходимо найти потенциалы узлов 1 и 2. Составим систему уравнений по методу узловых потенциалов для узлов 1 и 2.

Рассматривая узел 1, получим

φ 1 ⋅ g 11 − φ 2 ⋅ g 12 − φ 3 ⋅ g 13 =J+ E 1 R 1 + R ′ 1

или

φ 1 ⋅ g 11 − φ 2 ⋅ g 12 =J+ E 1 R 1 + R ′ 1 + E 1 ⋅ g 13 .

В правой части этого уравнения оба слагаемых учтены со знаком плюс, так как J и E1 направлены к узлу 1.

Рассматривая узел 2 (правая часть уравнения равна нулю, так как в ветвях, подсоединенных к узлу 2, нет источников энергии), получим

Индивидуалка Лиза (25 лет) т.8 929 529-57-81 Москва, метро Полянка. газификатор — вся актуальная информация на нашем сайте.

− φ 1 ⋅ g 21 + φ 2 ⋅ g 22 − φ 3 ⋅ g 23 =0

или

− φ 1 ⋅ g 21 + φ 2 ⋅ g 22 = E 2 ⋅ g 23 .

Найдем собственную проводимость первого узла

g 11 = 1 R 6 + 1 R 1 + R ′ 1 + 1 R ИТ + 1 R 2 + 1 R 5 = 1 20 + 1 25 + 1 25 + 1 40 =0,155  См.

Проводимость ветви с идеальным источником тока равна нулю, так как внутреннее сопротивление идеального источника тока RИТ равно бесконечности.

Собственная проводимость узла 2

g 22 = 1 R 2 + 1 R 3 + 1 R 4 = 1 25 + 1 30 + 1 35 =0,102  См.

Взаимные проводимости между узлами

g 13 = 1 R 6 + 1 R 1 + R ′ 1 = 1 20 + 1 25 =0,09  См; g 21 = g 12 = 1 R 2 = 1 25 =0,04  См; g 23 = 1 R 3 = 1 30 =0,033  См.

Подставив в уравнения известные величины, получим

{ φ 1 ⋅0,155− φ 2 ⋅0,04=39 − φ 1 ⋅0,04+ φ 2 ⋅0,102=6,6

Для решения этой системы используем метод определителей. Главный определитель системы

Δ=| 0,155 −0,04 −0,04 0,102 |=0,01421.

Частные определители

Δ 1 =| 39 −0,04 6,6 0,102 |=4,242; Δ 2 =| 0,155 39 −0,04 6,6 |=2,583.

Находим потенциалы узлов

φ 1 = Δ 1 Δ = 4,242 0,01421 =298,6   В;    φ 2 = Δ 2 Δ = 2,583 0,01421 =181,8   В.

Определяем токи в ветвях (положительные направления токов в ветвях с ЭДС выбираем по направлению ЭДС, в остальных ветвях произвольно)

I 1 = φ 3 − φ 1 + E 1 R 1 + R ′ 1 = 200−298,6+150 10+15 =2,056  А.

В числителе этого выражения от потенциала узла 3, из которого вытекает ток I1, вычитается потенциал узла 1, к которому ток подтекает. Если ЭДС ветви совпадает (не совпадает) с выбранным направлением тока, то она учитывается со знаком плюс (минус). В знаменателе выражения учитываются сопротивления ветви.

Аналогично определяем другие токи (направления токов указаны на схеме рис. 1.4.1)

I 1 = φ 3 − φ 1 R 6 = 200−298,6 20 =−4,93  А; I 2 = φ 1 − φ 2 R 2 = 298,6−181,8 25 =4,67  А; I 3 = φ 3 − φ 2 R 3 = 200−181,8 30 =0,607  А; I 4 = φ 2 − φ 4 R 4 = 181,8−0 35 =5,194  А.

Для определения тока в ветви с идеальной ЭДС зададимся направлением тока I7. По первому закону Кирхгофа для узла 3 составим уравнение

− I 7 + I 3 + I 1 + I 6 =0.

Откуда

I 7 = I 3 + I 1 + I 6 =0,607+2,056−4,98=−2,317  A.

Задача 1.4.2 Определить токи в схеме рис. 1.4.2 методом узлового напряжения.

Задача 1.4.2 Определить токи в схеме рис. 1.4.2 методом узлового напряжения

Рис. 1.4.2

Решение

1 Находим напряжение между двумя узлами по методу двух узлов

U ab = φ a − φ b = E 1 ⋅ g 1 +J g 1 + g 2 + g 3 = 32⋅ 1 1 +18 1 1 + 1 6 + 1 2 =30   B.

При составлении этого уравнения по методу двух узлов в числителе необходимо брать произведение ЭДС на проводимость своей ветви со знаком плюс, если ЭДС направлена к узлу a, и минус — если направлена от узла a к узлу b.

Аналогичное правило определяет и знаки токов источников тока.

2 Находим токи по закону Ома (по закону Ома для ветви с ЭДС)

I 1 = E 1 + φ b − φ a R 1 = E 1 − U ab R 1 = 32−30 1 =2  А; I 2 = U ab R 2 = 30 6 =5  А; I 3 = U ab R 3 = 30 2 =15  А.

Правильность решения проверим по первому закону Кирхгофа

I 1 − I 2 + I 3 +J=0; 2−5−15+18=0.


Метод узловых потенциалов в статье ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА. Основные положения и соотношения. Упражнения и задачи

опорный узел,
метод двух узлов,
метод узловых напряжений,
метод узловых потенциалов,
собственная проводимость,
взаимная проводимость

Содержание:

Метод узловых напряжений:

Метод узловых напряжений (узловых потенциалов) является наиболее общим. Он базируется на первом законе Кирхгофа (ЗТК) и законе Ома. В отличие от методов, рассмотренных в лекции 4, метод позволяет уменьшить число уравнений, описывающих схему, до величины, равной количеству рёбер (ветвей) дерева (2.1)

Метод узловых напряжений

Идея метода состоит в следующем:

  1. Выбирается базисный узел — один из узлов цепи, относительно которого рассчитываются напряжения во всех узлах; базисный               узел помечается цифрой 0.
  2. Потенциал базисного узла принимается равным нулю.
  3. Рассчитываются напряжения во всех узлах относительно базисного.
  4. По закону Ома находятся токи и напряжения в соответствующих ветвях.

Напряжения в узлах цепи, отсчитанные относительно базисного, называют узловыми напряжениями.

Определение:

Метод анализа колебаний в электрических цепях, в котором неизвестными, подлежащими определению, являются узловые напряжения, называется методом узловых напряжений.

В дальнейшем будем полагать, что цепь имеет Метод узловых напряжений

Метод узловых напряжений

Предварительно покажем, что при известных узловых напряжениях можно найти напряжения на всех элементах цепи, а потому и все токи. Действительно, напряжение на любой ветви определяется по второму закону Кирхгофа (ЗНК) как разность соответствующих узловых напряжений, а токи в элементах найдутся по закону Ома. Для контура, включающего элементы Метод узловых напряжений  (рис. 5.1), по ЗНК имеем:

Метод узловых напряжений

откуда

Метод узловых напряжений

Аналогично можно записать

Метод узловых напряжений

что и требовалось показать.

Составление узловых уравнений

При составлении уравнений для, схемы рис. 5.1 будем полагать, что задающие токи Метод узловых напряженийи Метод узловых напряжений источников тока (их на схеме два) известны.

Тогда согласно первому закону Кирхгофа для узлов 1 и 2 в предположении, что в общем случае они связаны со всеми другими узлами, получим:

Метод узловых напряжений

Выразим токи в уравнениях через узловые напряжения, как показано в разд. 5.1:

Метод узловых напряжений

Раскрыв скобки и приведя подобные члены, получаем узловые уравнения:

Метод узловых напряжений

Полученный результат позволяет сделать следующие выводы:

Метод узловых напряжений— ый и Метод узловых напряжений-ый узлы; все эти слагаемые входят в уравнение с отрицательным знаком.

Аналогично записываются узловые уравнения для всех других узлов цепи, в результате чего образуется система узловых уравнений вида:

Метод узловых напряжений

где:

Метод узловых напряженийсобственная проводимость Метод узловых напряжений-го узла цепи, являющаяся арифметической суммой проводимостей всех элементов, подключённых одним из зажимов к Метод узловых напряжений-му узлу;

 Метод узловых напряженийвзаимная проводимость Метод узловых напряжений-го и Метод узловых напряжений-го узлов цепи, являющаяся проводимостью элемента, включённого между Метод узловых напряжений-ым и Метод узловых напряжений-ым            узлами;

Метод узловых напряженийзадающий ток Метод узловых напряжений-го узла цепи, являющийся алгебраической суммой задающих токов источников тока, подключённых одним         из зажимов к Метод узловых напряжений-му узлу цепи; слагаемые этой суммы входят в правые части уравнений со знаком «+», если направление отсчёта           задающего тока источника ориентировано в сторону к-го узла, и со знаком Метод узловых напряжений в противном случае.

Систему узловых уравнений принято записывать в канонической форме, а именно:

  • токи, как свободные члены, записываются в правых частях уравнений;
  • неизвестные напряжения записываются в левых частях уравнений с последовательно возрастающими индексами;
  • уравнения располагаются в соответствии с порядковыми номерами узлов. Такая запись применена в (5.2).

Система (5.2) является линейной неоднороднойМетод узловых напряжений системой независимых уравнений, поэтому позволяет найти искомые узловые напряжения. Методы решения таких систем широко известны (Крамера, Гаусса, Гаусса—Жордана).

Метод узловых напряжений даёт существенное сокращение необходимого числа уравнений по сравнению с методом токов элементов. Выигрыш оказывается тем значительнее, чем больше независимых контуров имеет цепь.

Метод узловых напряжений Система называется неоднородной, если хотя бы один из свободных членов (в данном случае это Метод узловых напряжений) не равен нулю.

Особенности составления узловых уравнений

Метод узловых напряжений можно применять и в тех случаях, когда в анализируемой цепи имеются источники напряжения. При этом:

  • напряжение между любой парой узлов, к которым подключён источник напряжения, известно;
  • в качестве базисного желательно выбирать узел, к которому одним из своих зажимов подключён источник напряжения — тогда   узловое напряжение, отсчитываемое между базисным узлом и вторым зажимом источника, равно ЭДС источника или    отличается от него знаком; кроме того, базисным может быть выбран узел, к которому подключено наибольшее число элементов,        если этот выбор не противоречит первой рекомендаций;
  • уменьшается число независимых узловых напряжений, а потому понижается и порядок системы, т. е. число входящих в систему          независимых уравнений;
  • если цепь содержит Метод узловых напряжений источников напряжения, имеющих один общий зажим, то число узловых уравнений, которое можно                  составить для такой цепи, равно

Метод узловых напряжений

Пример 5.1.

Записать систему узловых уравнений для удлинителяМетод узловых напряжений(рис. 5.2), рассмотренного в лекции 4.

Решение. Удлинитель содержит четыре узла и один источник тока, поэтому согласно (5.3) достаточно составить всего два узловых уравнения

Метод узловых напряжений

Положим узел 0 базисным, поскольку к нему одним из своих зажимов подключён источник напряжения. Узловое напряжение узла 1 известно и равно. ЭДС источника напряжения Метод узловых напряжений поэтому остаётся записать уравнения для узлов 2 и 3 по правилам, рассмотренным в разд. 5.1. Предварительно запишем собственные и взаимные проводимости узлов.

Метод узловых напряженийТакое обращение справедливо,-поскольку удлинители применяются для построения магазина затуханий, или аттенюатора.

Метод узловых напряжений

Собственная проводимость второго узла

Метод узловых напряжений

взаимные проводимости второго узла

Метод узловых напряжений

собственная проводимость третьего узла

Метод узловых напряжений

взаимные проводимости третьего узла

Метод узловых напряжений

Теперь получим систему узловых уравнений, записав узловые уравнения для второго и третьего узлов:

Метод узловых напряжений

Поскольку Метод узловых напряжений запишем эту систему уравнений в каноническом виде

Метод узловых напряжений

Эта система уравнений и является окончательным результатом решения задачи, поставленной в примере.

Если содержащиеся в цепи источники напряжения не имеют общего зажима, то задачу анализа следует решать или методом узловых напряжений в сочетании с принципом наложения или путём эквивалентных преобразований перейти к другой модели цепи.

При составлении узловых уравнений для цепей, содержащих многополюсники (например, транзисторы, операционные усилители
и т. д), следует прежде всего заменить эти многополюсники их схемами замещения.

Метод узлового напряжения

Расчет сложных разветвленных электрических цепей с несколькими источниками и двумя узлам, можно осуществить методом узлового напряжения. Напряжение межи узлами и называется узловым. UAB R3 узловое напряжение цепи (рис. 4.9) Для различных ветвей (рис. 4.9) узловое напряжение UAB можно опредо лить следующим образом.

1. Поскольку для первой ветви источник работает в режиме генератор:

Метод узловых напряжений

Величина тока определяется как

Метод узловых напряжений

где Метод узловых напряжений — проводимость

2.Для второй ветви источник работает в режиме потребителя следовательно

Метод узловых напряжений

Тогда ток

Метод узловых напряжений

3.Для третьей ветви

Метод узловых напряжений

(Потенциал точки В для третьей ветви больше, чем потенций точки А, так как ток направлен из точки с большим потенциалом в точку с меньшим потенциалом)

Величину тока Метод узловых напряжений можно определить по закону Ома

Метод узловых напряжений

По первому закону Кирхгофа для узловой точки А (или В):

Метод узловых напряжений

Подставив в уравнение (4.6) значения токов из уравнений (4.3), .4) и (4.5) для рассматриваемой цепи, можно записать

Метод узловых напряжений

Решив это уравнение относительно узлового напряжения UAB,  можно определить его значение

Метод узловых напряжений

Следовательно, величина узлового напряжения определяется отношением алгебраической суммы произведений ЭДС и проводимости ветвей с источниками к сумме проводимостей всех ветвей:

Метод узловых напряжений

Для определения знака алгебраической суммы направление токов во всех ветвях выбирают одинаковым, т.е. от одного узла другому (рис. 4.9). Тогда ЭДС источника, работающего в режиме генератора, берется со знаком «плюс», а источника, работающего в режиме потребителя, со знаком «минус». Таким образом, для определения токов в сложной цепи с двумя узлами вычисляется сначала узловое напряжение по выражению 4.9), а затем значения токов по формулам (4.3), (4.4), (4.5). Узловое напряжение UAB может получиться положительным или отрицательным, как и ток в любой ветви.

Знак «минус» в вычисленном значении тока указывает, что реальное направление тока в данной ветви противоположно словно выбранному.

Пример 4.7

В ветвях схемы (рис. 4.10) требуется определить токи, если: Метод узловых напряжений Метод узловых напряженийМетод узловых напряжений

Метод узловых напряжений

Решение

Узловое напряжение Метод узловых напряжений

Метод узловых напряжений

где Метод узловых напряжений

Метод узловых напряжений

тогда Метод узловых напряжений

Токи в ветвях будут соответственно равны

Метод узловых напряжений

Как видно из полученных результатов, направление токов Метод узловых напряжений противоположно выбранному. Следовательно, источник £ работает в режиме потребителя.

Пример 4.8

Два генератора (рис. 4.11), ЭДС и внутреннее сопротивление которых одинаковы: Метод узловых напряжений, питают потребитель (нагрузку) с сопротивлением R= 5,85 Ом.

Как изменится ток второго генератора: 1) при увеличении его ЭДС (£2) на 1 %; » 2) при увеличении узлового напряжения (UAB) на 1 %.

Решение

Определяется узловое напряжение UAB цепи (рис. 4.11)

Метод узловых напряжений

где

Метод узловых напряжений=Метод узловых напряжений

Тогда ток второго генератора

Метод узловых напряжений

При увеличении Е2 на 1 %, его величина станет равной

Метод узловых напряжений

тогда

Метод узловых напряжений

При этом Метод узловых напряжений

Следовательно, увеличение ЭДС генератора Е2 на 1 % приводит увеличению тока этого генератора на 24 %.

Метод узловых напряжений

2. При увеличении узлового напряжения на 1% его величины станет равной

Метод узловых напряжений

При этом Метод узловых напряжений Таким образом, ток второго генератора при увеличении узлового напряжения на 1 % уменьшится на 23,4 %.

Метод узловых напряжений

Знак «минус» означает уменьшение, а не увеличение тока Метод узловых напряжений.

Определение метода узловых напряжений

Метод узловых напряжений заключается в том, что на основании первого закона Кирхгофа определяются потенциалы в узлах электрической цепи относительно некоторого базисного узла. Эти разности потенциалов называются узловыми напряжениями, причем положительное направление их указывается стрелкой от рассматриваемого узла к базисному.

Напряжение на какой-либо ветви равно, очевидно, разности узловых напряжений концов данной ветви; произведение же этого напряжения на комплексную проводимость данной ветви равно току в этой ветви. Таким образом, зная узловые напряжения в электрической цепи, можно найти токи в ветвях.

Если принять потенциал базисного узла равным нулю, то напряжения между остальными узлами и базисным узлом будут равны также потенциалам этих узлов. Поэтому данный метод называется также методом узловых потенциалов.

На рис. 7-7 в виде примера изображена электрическая схема с двумя источниками тока, имеющая три узла: 1, 2 и 3. Выберем в данной схеме в качестве базиса узел 3 и

обозначим узловые напряжения точек 1 и 2 через Метод узловых напряжений Согласно принятым на рис. 7-7 обозначениям комплексные проводимости ветвей равны соответственно:
Метод узловых напряжений
Для заданной электрической цепи с тремя узлами могут быть записаны два уравнения по первому закону Кирхгофа, а именно: для узла 1

Метод узловых напряжений

для узла 2

Метод узловых напряжений

Величина Метод узловых напряжений представляющая собой сумму комплексных проводимостей ветвей, сходящихся в узле 1, называется собственной проводимостью узла 1 величина Метод узловых напряженийравная комплексной проводимости ветви между узлами 1 и 2, входящая в уравнения со знаком минус, называется об-, щей проводимостью между узлами 1 и 2.

Если заданы токи источников тока и комплексные проводимости ветвей, то узловые напряжения находятся совместным решением уравнений.

В общем случае если электрическая схема содержит q узлов, то на основании первого закона Кирхгофа получается система из q — 1 уравнений (узел q принят за базисный):

Метод узловых напряжений

Здесь ток источника тока, подходящий к узлу, берется со знаком плюс, а отходящий от узла — со знаком минус;Метод узловых напряжений — собственная проводимость всех ветвей, сходящихся в данном узле Метод узловых напряжений — общая проводимость между узламп Метод узловых напряжений входящая со знаком минус при выбранном направлении всех узловых напряжений к базису, независимо от того, является ли данная электрическая цепь планарной или непланарной.

Решив систему уравнений (7-5) при помощи определителейМетод узловых напряжений получим формулу для Метод узловых напряжений узлового напряжения относительно базиса:

Метод узловых напряжений
гдеМетод узловых напряжений — определитель системыМетод узловых напряжений

Метод узловых напряжений

Метод узловых напряжений — алгебраическое дополнение элемента Метод узловых напряжений данного определителя.

Первый индекс i алгебраического дополнения, обозначающий номер строки, вычеркиваемой в определителе системы, соответствует номеру узла, заданный ток источника тока которого умножается на данное алгебраическое дополнение. Второй индекс Метод узловых напряжений обозначающий номер столбца, вычеркиваемого в определителе системы, соответствует номеру узла, для которого вычисляется узловое напряжение.

Уравнения (7-5), выражающие первый закон Кирхгофа, записаны в предположении, что в качестве источников электрической энергии служат источники тока. При наличии в электрической схеме источников э. д. с. последние должны быть заменены эквивалентными источниками тока.

Если в схеме имеются ветви, содержащие только э. д, с. (проводимости таких ветвей бесконечно велики), то эти ветви следует рассматривать как источники неизвестных токов, которые затем исключаются при сложении соответствующих уравнений. Дополнительными связями между неизвестными узловыми напряжениями будут являться известные напряжения между узлами, равные заданным э. д. с. 

Метод узловых напряженийОпределитель снабжен индексом у, так как его элементами являются комплексные проводимости.

При наличии только одной ветви с э. д. с. и бесконечной проводимостью целесообразно принять за базисный узел один из узлов, к которому примыкает данная ветвь; тогда напряжение другого узла становится известным и число неизвестных сокращается на одно.

Метод узловых напряжений имеет преимущество перед методом контурных токов в том случае, когда число уравнений, записанных по первому закону Кирхгофа, меньше числа уравнений, записанных по второму закону Кирхгофа. Если заданная электрическая схема имеет q узлов и р ветвей, то в соответствии со сказанным выше, метод узловых напряжений представляет преимущество при q — 1 < р — q + 1. или, что то же, при 2 (q — 1) < р.

Здесь имеется в виду общий случай, когда число уравнений не сокращается за счет известных контурных токов
или узловых напряжении.

Метод узловых напряжений

Пример 7-3. 

Пользуясь методом узловых напряжений определить ток в диагонали мостовой схемы (см. рис. 7-6).

В результате замены заданного источника э. д. с. .эквивалентным источником тока получается схема (рис. 7-8), содержащая четыре узла. Для этой схемы по первому закону Кирхгофа записывают 4—1 = 3 уравнения (по числу независимых узлов). Если выбрать в данной схеме в качестве базиса узел 4 и направить узловые напряжения к базису, то уравнения примут вид:

для узла 1
Метод узловых напряжений
для узла 2

Метод узловых напряжений
для узла 3

Метод узловых напряжений

Решение полученной системы уравнений относительно Метод узловых напряжений даст

Метод узловых напряжений

где

Метод узловых напряжений

Умножив найденное узловое напряжение Метод узловых напряжений на проводимость Метод узловых напряжений диагональной ветви мостовой схемы и изменив знак в соответствии с выбранным ранее направлением тока Метод узловых напряжений(см. рис. 7,-3), найдем искомый ток:

Метод узловых напряжений

  • Метод узловых потенциалов 
  • Принцип и метод наложения
  • Входные и взаимные проводимости
  • Преобразование треугольника сопротивлений в эквивалентную звезду
  • Электрическая цепь
  • Электрический ток
  • Электрические цепи постоянного тока
  • Методы анализа сложных электрических цепей

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти объем нескольких фигур
  • Найдите как можно больше букв
  • Как правильно составить заявление в госуслугах
  • Как исправить ошибки с кодировками
  • Как найти один наушник эйр подс

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии